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Research activities
The cardiovascular system is a system of closed tubes - the blood vessels. Any
oscillation in the system can be sensed at each point of it, with the intensity (amplitude)
being different with respect to the place of recording and the nature of recorded signal.

It is our aim to reveal these dynamics from the measured signal and find the
physiological nature of subsystems which contribute to the dynamics of the blood flow.
Therefore, the frequency characteristics and the quantities that classify nonlinear
systems in the phase space are estimated. Thus, not only the characteristic of the
individual subsystem can be found, but also the nature of couplings between them. It is
expected that various abnormalities due to different pathology will be reflected in
changed phase and frequency couplings among the subsystems.
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Seminars
 

2002 12 June
Synchronization and direction of coupling from time-series: an information-
theoretic approach
Milan Palus, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, Czech Republic

30 May
Introduction to classical and quantum chaos in Hamiltonian systems
Marko Robnik, Center for Applied Mathematics and Theoretical Physics, University of
Maribor, Maribor, Slovenia

29 May
Modeling the cardiovascular and respiratory control systems
Jerry Batzel, Karl-Franzens University of Graz, Graz, Austria

24 April
The normal form method in the theory of ordinary differential equations
Valery Romanovski, Center for Applied Mathematics and Theoretical Physics, University
of Maribor, Maribor, Slovenia

17 January
Large fluctuations, escape, and the control of chaos
Peter V. E. McClintock, Low Temperature Laboratory/Nonlinear Laboratory, Department
of Physics, Lancaster University, Lancaster, UK

 
2001 4 December

Discrete Heisenber algebras and discrete Fourier transforms
Andreas Ruffing, Department of Mathematics, Munich University of Technology, Munich,
Germany

30 October
Nonlinear dynamics of human bloodflow: computer analysis of cardiovascular
data
Peter V. E. McClintock, Low Temperature Laboratory/Nonlinear Laboratory, Department
of Physics, Lancaster University, Lancaster, UK

24 October
Information rates for signal analysis
Milan Palus, Institute of Computer Science, AS CR, Prague, Czech Republic

15 October
Synchronization in biological systems: An introduction
Michael Rosemblum, Nonlinear Dynamics Group at the Institute of Physics, University of
Potsdam, Potsdam, Germany

15 October
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Stochastic phase resetting and phase synchronization: Application to
neuroscience
Peter A. Tass, Institute of Medicine (MEG) Research Centre Jülich, Jülich, Germany

12 April
Optimal fluctuations and the control of chaos
Dmitrii G. Luchinsky, Department of Physics, Lancaster University, Lancaster, UK
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Institute for Theoretical Physics and Synergetics
Stuttgart University, Stuttgart, Germany

Department of Physics
Lancaster University, Lancaster, United Kingdom

Department of Anesthesia and the Institute for Experimental Medical Research
Ullevål Hospital, Oslo, Norway

Department of Nonlinear Dynamics
University of Florence, Florence, Italy

Institute of Pathophysiology
Medical Faculty, University of Ljubljana, Slovenia

Department of Internal Intesive Care and Department of Diabetes
University Clinical Centre, Ljubljana, Slovenia

Moor Instruments Limited
Axminster, England, U.K.

Depatment of Plastic and Reconstructive Surgery
Malmö University Hospital, Malmö, Sweden

Group for research in Angiology
Toulouse University Hospital, Toulouse, France

Department of Pulmonary Physiology
Latvian Medical Academy, Riga, Latvia

Department of Anaesthesia
Odense University Hospital, Odense, Denmark

Institute of Physics
Faculty of Natural Sciences and Mathematics
University Sv. Kiril i Metodij, Skopje, Macedonia

Department of Mechanical and Electrical Engineering
Universidad Iberoamericana, Mexico City, Mexico
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I studied at the Faculty of Electrical and Computer Engineering, University of Ljubljana,
Slovenia, where I received the M.Sc. degree in 1988 and the Ph.D. degree in 1992. Part
of my Ph.D. I did at the Institute of Theoretical Physics and Synergetics, University of
Stuttgart, Germany.

As a member of the Laboratory of Biocybenetics I was involved in various studies of
therapeutic effects of electric currents in spasticity, rigidity, nerve regeneration, wound
healing and modification of motor function. Searching for the mechanisms of therapetuic
effects of electric currents brought me to measurments of peripheral blood flow and
study of the blood flow dynamics in the cardiovascular system. Since December 1993 I
have been leading the Group of Nonlinear Dynamics and Synergetics, dealing primarily
with theoretical and experimental studies of the system of coupled oscillators that
regulate the blood flow. My research interest is in developing and applying methods of
nonlinear dynamics in studies of biological systems.

My research story in Slovene Download PDF.
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I was born in 1968. After finishing the high school in Kranj, I started my studies at the
Faculty of Electrical Engineering on the University of Ljubljana. In 1993 I received my
B. Sc. Degree in electrical engineering for my work on the Lyapunov exponents of
blood flow. In 1995 I joined the Group of Nonlinear Dynamics and Synergetics as a
junior researcher. Within this group I have prepared Ph.D. thesis titled Couplings
among subsystems that regulate blood flow in 1999.
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Maja Bracic Lotric
Faculty of Electrical Engineering    
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SI-1000 Ljubljana, Slovenia
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Maja Bracic Lotric
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Office:

Maja Bracic Lotric
Iskra Impuls
Gregorciceva 8,
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I have finished the elementary school in Lendava. After finishing the secondary school at
Gimnazija Murska Sobota in 1997, I have continued my studies at the Faculty of
Electrical Engineering in Ljubljana. While working on my diploma thesis in April 2003, I
have joined the Group of Nonlinear Dynamics and Synergetics. I graduated in July 2003
when I received my B.Sc. Degree in electrical engineering. From October 2004 I work
with the group as a junior researcher. 

Addresses 

 

Faculty:
Faculty of Electrical Engineering
Tržaška 25
SI-1000 Ljubljana, Slovenia

Phone: +386(0)1 4768 249
Fax: +386(0)1 4264 630
E-mail: alan@osc.fe.uni-lj.si

Home:
Gornja ulica 9
Gaberje
9220 Lendava

Phone: +386(0)1 576 1482
Mobile: +386(0)31 332 971
E-mail: alanbernjak@hotmail.com
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Research Activities - Some Results
A mathematical model of coupled oscillators which regulate the blood flow was
proposed. To reveal the nature of each subsystem (i.e. oscillator) and their mutual
couplings, seven physiological signals are recorded simultaneously, namely the blood
flow on four different sites, the electric activity of the heart (ECG), the blood pressure
and the excursions of thorax due to the respiration activity. An additional signal of the
heart rate variability (HRV) is derived from the ECG. Those time series have been
recorded in healthy subjects, sportsmen and individuals with various cardiovascular
diseases - the Raynaud's phenomenon, diabetes and miocardiac infarction and subjects
with spinal cord injuries. The effect of denervation is also studied in animal experiments.

Algorithms for linear and nonlinear time series analysis have been developed and
applied to measured signals. In terms of linear system theory, the estimations of time-
varying frequency spectra by windowed Fourier transform, autoregressive modelling and
wavelet based methods are used. Linear methods are supplemented by methods from
nonlinear system theory such as calculation of correlation dimension, Lyapunov
exponents and analysis of system determinism.
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On the time scale of minutes 5 characteristic frequencies were found in measured
cardiovascular signals, namely ~ 0.01 Hz, ~ 0.04 Hz, ~ 0.1 Hz, ~ 0.2 Hz and ~ 1 Hz.
The physiological origin of the last two is known, ~ 0.2 Hz is synchronised with the
respiration and ~ 1 Hz with heart rate. The physiological meaning of the slower
oscillations is still to be revealed. There are some evidences in the literature that
~ 0.1 Hz corresponds to vessels oscillations resulting from a local miogenic regulation of
their diameter. We hypothesise that ~ 0.05 Hz represents the neurogenic and
~ 0.01 Hz the metabolic regulation of flow of blood through the system of closed tubes.

Any disorder in cardiovascular system is reflected in the energy contribution of each
characteristic frequency and the amplitude and frequency couplings between
subsystems.
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Research Activities - Projects
2002 – 2006
STOCHASTIC DYNAMICS: FUNDAMENTALS AND APPLICATIONS
ESF Programme STOCHDYN

2001 – 2004
SYNCHRONIZATION OF BIOLOGICAL OSCILLATORS: EXPERIMENTS, ANALYSIS AND
MODELLING
(network grant) INTAS 01-2061

2001 – 2003
FLUCTUATIONS, CHAOS, AND COMPLEXITY IN MULTISTABLE SYSTEMS
(network grant) INTAS

2001 – 2002
NONLINEAR DYNAMICS OF HUMAN BLOODFLOW
Bilateral Slovenian-British Scientific and Technological Cooperation Partnerships in
Science

2001 – 2005
STUDYING THE REGULATION OF WAVES AND OSCILLATIONS IN VASCULAR SYSTEM
The Slovenian Ministry of Education, Science and Sport, Ljubljana, Slovenia, project #

1999 – 2001
ANALYSIS AND REGULATION OF BIOLOGICAL SYSTEMS
Bilateral Slovenian-Italian Scientific and Technological Cooperation

1998 – 2001
RECONSTRUCTING THE PHYSIOLOGICAL AND BIOCHEMICAL BASIS OF
CARDIOVASCULAR OSCILLATIONS
Bilateral Slovenian-Norwegian Scientific and Technological Cooperation

1998 – 2001
STUDYING THE REGULATION OF WAVES AND OSCILLATIONS IN VASCULAR SYSTEM
The Slovenian Ministry of Science and Technology, Ljubljana, Slovenia, project # J2-
0721-1538

1998 – 2000
RECONSTRUCTING CARDIOVASCULAR DYNAMICS
Bilateral Slovenian-German Scientific and Technological Cooperation

1997 – 1999
COMPUTER SYSTEMS IN MONITORING
The Slovenian Ministry of Science and Technology, Ljubljana, Slovenia, Bilateral SLO-I
Scientific and Technological Collaboration Project

1997 – 1999
BLOOD FLOW DYNAMICS: OSCILLATORS COUPLINGS
The Slovenian Ministry of Science and Technology, Ljubljana, Slovenia, Bilateral SLO-
Macedonian Scientific and Technological Collaboration Project

1995 – 1998
TOWARDS REVEALING COUPLINGS AMONG THE OSCILLATORS THAT REGULATE BLOOD
FLOW

http://summa.physik.hu-berlin.de/~alsg/Esf/projects.html
http://www.lancs.ac.uk/depts/physics/research/condmatt/intas/intas.htm


Group of Nonlinear Dynamics and Synergetics - Research Activities (Projects)

http://www.lancs.ac.uk/depts/physics/research/nbmphysics/ljubljana/projects.html[03/06/2009 16:56:58]

The Slovenian Ministry of Science and Technology, Ljubljana, Slovenia, project # J2-
7156-0781-95

1994 – 1996
TOWARDS REVEALING PHASE AND FREQUENCY COUPLINGS AMONG THE OSCILLATORS
THAT REGULATE BLOOD FLOW– IN NORMAL AND PATHOLOGICAL CASES
The European Concerted Action BIOMED II: Laser Doppler flowmetry for microcirculation
monitoring, Brussels, Belgium, project # PL93-1041
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Research Activities - Theses

Ph.D. 
Theses 

Model of transected peripheral nerve regeneration in a guidance channel with
electromagnitc field
Martin Tomšiè, 2001.

Couplings among subsystems that regulate blood flow
Maja Braèiè Lotriè, November 1999.

 

Master 
Theses 

Development of the SPY-COBBLE - an instrumented tracer for measuring
dynamics of sediment transport in turbulent flows 
Mojca Spazzapan, October 2001.

The bispectral analysis of cardiovascular oscillations
Janez Jamšek, April 2000.

Synchronization in cardiovascular system
Mario Hožiè, April 2000.

The impact of autonomic and somatic nervous system on the blood flow
dynamics
Marko Èenèur, April 1997.

 

Diploma 
Theses 

Cardiovascular dynamics after myocardiac infarction
Fabris Peruško, September 1998.

A new generation of automation processes controling programms
Boris Ilovar, June 1998.

Controlling general anasthesia
Boštjan Makovec, June 1998.

Cardiovascular dynamics in diabetic subjects
Robert Mavri, December 1997.

The response of pheripheral blood flow on vasodilating substances
Smpad Vladikoviæ, September 1997.

Multiresolution analysis in trend detection
Toni Braèiè, April 1997.

Wavelets analysis of peripheral blood flow in susbjects with Raynaud's
phenomen
Domen Rakovec, October 1996.

http://ksh.fgg.uni-lj.si/KSH_ANG/spy_cobble/index.html
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Wavelets analysis of cardiovascular functions
Matej Hoèevar, July 1996.

Blood flow dynamics in subjects with Raynaud's phenomenon
Urša Teran, July 1996.

Analysis of sensory information during gate assisted by electrical stimulation
Alenka Flander, June 1996.

Static and dynamics of blood flow in sportsman and non-sportsman
Mojca Spazzapan, May 1995.

Methods for the estimation of time-varying frequency spectra of the blood flow
signal
Blaž Voler, January 1995.

Dynamics of partial oxygen pressure on the skin
Marko Èenèur, December 1993.

Lyapunov exponents of blood flow
Maja Braèiè, September 1993.
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Synchronization and direction of coupling from time-series: an information-
theoretic approach 

Milan Palus 
Institute of Computer Science

Academy of Sciences of the Czech Republic
Prague, Czech Republic

Abstract: An information-theoretic approach for studying synchronization phenomena experimental bivariate
time series is presented. "Coarse-grained'' information rates are introduced and their ability to indicate
synchronization as well as to establish a `"direction of information flow'' between coupled systems, i.e. to
discern the driving from the driven (response) system, is demonstrated.
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Introduction to classical and quantum chaos in Hamiltonian systems 

Marko Robnik 
CAMTP - Center for Applied Mathematics

and Theoretical Physics, University of Maribor,
Krekova 2, 2000 Maribor, Slovenia 

Abstract: We shall review the basic aspects of complete integrability and complete chaos (ergodicity) in
classical Hamiltonian systems, as well as all the cases in between, the mixed type systems, where KAM Theory
is applicable, and shall illustrate it using the billiard model systems. Then we shall proceed to the quantum
chaos and its stationary properties, that is the structure and the morphology of the solutions of the underlying
Schroedinger equation which in case of 2-dim billiards is just the 2-dim Helmholtz equation. We shall discuss
the statistical properties of chaotic eigenfunctions, the statistical properties of the energy spectra, and show
arguments and results in support of the so-called universality classes of spectral fluctuations, where in the fully
chaotic case the Random Matrix Theory (RMT) is applicable. We shall mention the rich variety of applications in
the domain of physics.



Group of Nonlinear Dynamics and Synergetics - Seminars

http://www.lancs.ac.uk/depts/physics/research/nbmphysics/ljubljana/seminars/seminar29052002.html[03/06/2009 16:57:00]

Modeling the Cardiovascular and Respiratory control systems 

Jerry Batzel 
Karl-Franzens University of Graz

Institute of Mathematics
Research Center on Optimization and Control

Heinrichstr. 36
A-8010 Graz, Austria 

Abstract: In this talk we consider approaches to modeling the human cardiovscular and respiratory control
systems. We include transport delays in the state equations for respiration. The effectiveness of the control of
the ventilation rate V is influenced by such transport delays. The cardiovascular control system interaction
between heart rate, blood pressure, cardiac output, and blood vessel resistance is complex. We will model the
cardiovascular control mechanism as an optimal control. We will review a number of modeling approaches to
clinical conditions which are of importance at the current time.
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The normal form method in the theory of ordinary differential equations 

Valery Romanovski 
Center za uporabno matematiko in teoreticno fiziko

Univerza v Mariboru
Krekova 2, SI-2000 Maribor, Slovenia

Abstract: The normal form method of local analysis of solutions of ordinary autonomous differential equation
will be briefly introduced. Then, main theorems of the Lyapunov function method will be presented and their
application to investigation of local properties of solutions of differential equations will be demonstrated. The
problem of periodic solutions for a system of few coupled oscillators will also be considered.
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Large fluctuations, escape, and the control of chaos 

Peter V.E. McClintock 
Low Temperature Laboratory/Nonlinear Laboratory

Lancaster University
Lancaster, United Kingdom

Abstract: Most of the important events in fluctuating systems (eg. escape from an attractor) are due to
occurrence of special larger-than-average fluctuations. Although they are very rare, and coming at random
intervals, when they occur they do so in an almost deterministic way. The lecture will discuss the nature of
large fluctuations, how they can be studied experimentally, and how they can sometimes be calculated
analytically.
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Discrete Heisenber Algebras and and Discrete Fourier Transforms 

Andreas Ruffing 
Technische Universität München

Zentrum Mathematik
Arcisstrasse 21, D-80333 München, Germany

Abstract: On 5 December 1901 Werner Heisenberg was born. One of his main contributions to quantum
mechanics, the Heisenberg uncertainty principle, plays - apart from its meaning to physics - also a strong role
in functional analysis: there, for instance, the deep connection between the Heisenberg algebra and the
structure of Fourier transforms is of great interest. Starting from the classical Heisenberg algebra, we present a
modification of this algebra which leads to a discrete Fourier transform on a one dimensional q-grid. We
present the basic similarities between the Fourier transform and Schroedinger operators in the discrete
scenario and in the continuous one. Both situations are compared and we will ask the question to what extent
the presented q-Fourier transform might be applied to the analysis of signals, for instance in biomathematics.
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Nonlinear dynamics of human bloodflow: computer analysis of cardiovascular data 

Peter V. E. McClintock 
Low Temperature Laboratory/Nonlinear Laboratory

Department of Physics, Lancaster University
Lancaster, UK

Abstract: The blood flows in accordance with the main rhythms of the human body, not just heartbeat and
breathing, but many others too. Although it has been well-known for almost a century that these much slower
rhythms also exist, it is only recently that the full picture has been revealed and clarified by Aneta Stefanovska
and her collaborators in Ljubljana. She and Peter McClintock in Lancaster are working to under- stand how the
various rhythms influence each other, and to see how they are affected by different diseases - and might thus
be used to detect the onset of disease at an early stage.
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Information rates for signal analysis 

Milan Palus 
Institute of Computer Science

AS CR
Prague, Czech Republic

Abstract: The concept of characterization of dynamical processes using entropy rates is common to the theory
of stochastic processes and to information theory, and due to Kolmogorov also to the theory of dynamical
systems. Entropy rates which quantify a rate of information creation by a system (or, in other words, the rate
how quickly a system forgets its history) are measures suitable for quantifying dynamical "complexity" (or
regularity and predictability) of a process under study. In real data applications, however, possibilities to
estimate the exact entropy rate are limited to a few cases (Gaussian processes, finite state Markov chains).
Instead, we introduce so called coarse-grained entropy rates (CER) suitable for a relative quantification of
regularity and predictability of complex dynamical processes. The performance of CER in analyses of real data
is compared to that of other dynamical measures, such as dimensions, Lyapunov exponents as well as other
entropy measures. Extensions of CER into information rates for characterization of synchronization phenomena
is also discussed.
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Information rates for signal analysis 

Michael Rosemblum 
Nonlinear Dynamics Group at the Institute of Physics

University of Potsdam
Potsdam, Germany

Abstract: Brief introduction to synchronization theory will be presented on a qualitative level. Main effects,
such as entrainment of an oscillator by external force, mutual synchronization of coupled systems,
synchronization in noisy environment, synchronization in ensembles and in oscillatory media will be discussed
and illustrated by results of experiments and observations.
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Information rates for signal analysis 

Peter A. Tass 
Institute of Medicine (MEG) Research Centre Juelich

Germany

Abstract: The talk is about detecting and manipulating synchronization processes. Phase syncronization is a
fundamental control mechanism in the nervous system. By means of the synchronization tomography it is
possible to anatomically localize phase synchronization non-invasively in humans with
magnetoencephalography. The method will be explained and applications to motor control as well as
Parkinson's disease will be presented. Based on stochastic phase resetting stimulation techniques were designed
which effectively desynchronize populations of interacting oscillators. This approach is used for the development
of mild and efficient deep brain stimulation techniques for the therapy of neurological diseases like Parkinson's
disease or essential tremor.
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Optimal fluctuations and the control of chaos 

Dmitrii G. Luchinsky 
Department of Physics
Lancaster University

Lancaster, UK

Abstract: The energy-optimal migration of a chaotic oscillator from one attractor to another coexisting
attractor is investigated via an analogy between the Hamiltonian theory of fluctuations and Hamiltonian
formulation of the control problem. We demonstrate both on physical grounds and rigorously that the Wentzel-
Freidlin Hamiltonian arising in the analysis of fluctuations is equivalent to the Pontryagin's Hamiltonian in the
control problem with an additive linear unrestricted control. The deterministic optimal control function is
identified with the optimal fluctuational force. Numerical and analogue experiments undertaken to verify these
ideas demonstrate that, in the limit of small noise intensity, fluctuational escape from the chaotic attractor
occurs via a unique (optimal) path corresponding to a unique (optimal) fluctuational force. Initial conditions on
the chaotic attractor are identified. The solution of the boundary value control problem for the Pontryagin's
Hamiltonian is found numerically. It is shown that this solution is very accurately approximated by the optimal
fluctuational force found using statistical analysis of the escape trajectories. A second series of numerical
experiments on the deterministic system (i.e. in the absence of noise) show that a control function of precisely
the same shape and magnitude is indeed able to instigate escape. It is demonstrated that this control function
minimizes the cost functional and the corresponding energy is found to be smaller than that obtained with
some earlier adaptive control algorithms.
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Aneta Stefanovska – raziskovalna pot

Ko sem na programu študija na Univerzi v Ljubljani marca 1976 prebrala specialnost
biokibernetika, v okviru študija na Fakulteti za elektrotehniko, sem bila prepričana, da je
to tisto, kar sem si od nekdaj želela.

Profesor Vodovnik je več let preživel v Ameriki in se seznanil s področjem, ki je
združevalo matematiko, fiziko, fiziologijo in medicino. To področje so pogosto poimeno-
vali biokibernetika. Združevalo je vedenje o povratnozančnem delovanju sistemov, ki ga
je nekaj desetletij prej matematik Wiener poimenoval kibernetika, in pa uporabnost teh
spoznanj za razumevanje delovanja bioloških sistemov. Med vsemi biološkimi sistemi je bil
takrat v ospredju sistem za gibanje, predvsem pri človeku, in razumevanje njegovega delo-
vanja – od živca, prek živčno-mǐsične interakcije, preprostega gibanja enega sklepa, pa vse
do hoje ali gibanja rok. Profesor Vodovnik je gojil področje, ki je zajemalo razumevanje
gibanja in kontrole gibanja ter gradnjo matematičnih modelov na osnovi Wienerjevega
kibernetskega pristopa z negativno povratnozančno regulacijo pri zdravih osebah in po
spremembah, ki jih prinašajo poškodbe in bolezni živčno-mǐsičnega sistema. Te se, med
drugim, izražajo kot hemiplegija, paraplegija, multipla skleroza, Friedrichova ataksija,
Parkinsonova bolezen, mǐsična ali živčno-mǐsična distrofija.

S sodelavci, med katere sem celo desetletje sodila tudi jaz, je iskal možnosti za izbolǰsanje
nekaterih izmed teh stanj. Pomanjkljivo kontrolo je poskušal popraviti z zunanjo kontrolo
s pomočjo električnih tokov. Zaradi poškodb ali bolezni je živčni sistem izvajal omejeno
kontrolo nad mǐsicami, ali pa kontrole sploh ni bilo, in zato je bilo gibanje bolnikov omejeno
ali celo onemogočeno. V ozadju tega pristopa je bila zamisel, da je mogoče manjkajočo
kontrolo živcev nad mǐsicami in sklepi nadomestiti ali premostiti z zunanjo kontrolo z elek-
tričnimi tokovi. Le program kontrole in vrednotenje ustreznosti izvabljenega giba je bilo
potrebno raziskati in ugotoviti. Gradil je torej svet visoko analitičnega pristopa, zgrajen
na teoriji kibernetike, in pa popolnoma praktičen svet priprave orodij in naprav, s katerimi
bi pomagali bolnikom.

Moje delo v okviru laboratorija za biokibernetiko je bilo vseskozi zaznamovano s to
dvojnostjo: z željo po čimvečjem teoretičnem – matematičnem in fizikalnem – razumevanju
in predstavitvi posameznih delov sistema za gibanje, ter hkrati praktičnim pristopom in
izdelavo pripomočkov za izbolǰsanje bolezenskih stanj. Pri tem sem se nenehno spopadala
z dejstvom, da je zelo težko povezati ta dva pristopa oziroma da med modeli in praktičnimi
aplikacijami obstaja velik razkorak.

Na Fakulteti za elektrotehniko, v laboratoriju za biokibernetiko, sem formalno začela
delati 1. aprila 1981, dejansko pa mesec dni prej. Čakala sem namreč na nastavitev na
mesto stažistke-raziskovalke.

Med dodiplomskim študijem sem bila vseskozi usmerjena k biokibernetiki oziroma
uporabi sistemske teorije za biološke sisteme. Na koncu četrtega letnika sem za šest ted-
nov odšla na študijsko prakso v termoelektrično centralo Turbigo blizu Milana. Tam
sem se seznanila z različnimi sistemi za regulacijo posameznih procesov. Vsem, ki so me
bili pripravljeni poslušati, pa sem razlagala, kaj si želim delati. Tako da me je eden od
inženirjev povezal s profesorjem Divietijem z Univerze v Milanu. Kmalu sem ga obiskala
in od njega izvedela, da je možno z električnimi tokovi doseči spremembe tudi pri zdravih
osebah, denimo pri športnikih. Delal je na programu, ki ga je nekaj let prej vpeljal ruski
znanstvenik Kotz za jačanje mǐsic športnikov, predvsem pa mǐsic astronavtov med biva-
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njem v breztežnostnem prostoru. Tam namreč hitro izgubijo mǐsično moč, ker se mǐsicam
ni treba nenehno upirati gravitacijski sili, kot je to na Zemlji.

Spoznanja, ki sem jih pridobila med obiskom pri profesorju Divietiju, sem prinesla s
seboj v Ljubljano in jih takoj posredovala profesorju Vodovniku, s katerim sem se že do-
govorila, da bom pri njem delala diplomsko nalogo. Ni popolnoma verjel, da je mogoče
kakorkoli vplivati na zdrav živčno-mǐsični sistem. Pred leti je namreč predlagal ”balančno
hipotezo”, ki ima za osnovo delovanja živčno-mǐsičnega sistema ravnotežje med ekcita-
tornimi (dražilnimi) in inhibitornimi (zaviralnimi) dražljaji. Pri bolnikih je to ravnotežje
porušeno, zato ga z zunanjimi električnimi tokovi lahko popravljamo, zdravo stanje pa je
dovolj stabilno in ga ni mogoče dodatno spreminjati.

Dogovorila sva se, da bom s poskusi preverila, ali je možno vplivati na živčno-mǐsični
sistem zdravih oseb, in če je, predlagala model na sinaptičnem nivoju, s katerim bi poiskala
razlago za dosežene spremembe. Tako sem z diplomskim delom začela svojo pot, ki traja do
danes: poskušati združiti eksperimentalni in teoretični pristop do določenega problema.
Moj prvi članek je nastal na osnovi diplomskega dela, ki je kasneje privedlo do nekaj
dodatnih študij in tudi več člankov.

Delo v okviru diplomske naloge me je še leta občasno pripeljalo med športnike, tako
da sem sodelovala z raziskovalci na Fakulteti za šport in nekaterimi športniki. Poleg
raziskav je šlo včasih le za pomoč. Na primer, smučarka Andreja Leskovšek si je pri
padcu na smukaški tekmi pretrgala kolenske vezi, ki so jih z operacijo spet povezali. Ker
kolena ni smela obremenjevati, ji je zelo hitro oslabela nadkolenska mǐsica quadriceps. V
izometričnih razmerah, brez obremenitev za koleno, smo ji nekaj tednov dva do trikrat na
teden z električnimi tokovi izvabljali kontrakcijo mǐsice in jo tako krepili. Z rezultati je
bila zelo zadovoljna, in kot se spominjam, tudi njen trener in zdravnik.

Delo s športniki sem opravljala vzporedno z ostalim delom še nekaj let. S trenerjem
atletov, Srdjanom Djordjevićem in Renato Karbo, mlado raziskovalko v laboratoriju za
biokibernetiko smo sestavili program vadbe z električno stimulacijo, ki je jačal eksplozivno
komponento gibanja. Do takrat so bile namreč vse študije usmerjene k jačanju vztra-
jnostne komponente, saj se je, ob povečani aktivnosti zaradi električne stimulacije težko
izogniti mǐsičnemu utrujanju. Ko se pojavi utrujanje, se takoj vključi vztrajnostna kom-
ponenta, ki se krepi, eksplozivna pa ne več. Program smo preverili v skrbno načrtovani
študiji, v kateri smo z dalǰsimi časovnimi presledki izvabljali kratko, a močno mǐsično kon-
trakcijo. Ugotovitve smo prikazali v znanstveni publikaciji. Program so hkrati vključili v
trening skakalcev v vǐsino in drugih atletov v eksplozivnih disciplinah.

Vmes sem intenzivno delala na problemu spastičnih mǐsic. To vprašanje sem obdelala
za magistrsko nalogo. S pomočjo hidravlične merilne opornice, ki jo je za svoj doktorat
razvil kolega Stanislav Reberšek, sem merila določene parametre med pasivnim gibanjem
skočnega sklepa pri zdravih osebah in pri bolnikih z nekaterimi živčno-mǐsičnimi bolezni-
mi, zaradi katerih je prihajalo do spastičnosti, ki se pojavlja kot posledica neinhibirane in
nekontrolirane aktivnosti posameznih mǐsic. Na primer, med nategom mǐsice se aktivirajo
mǐsična vretena in receptorji za nateg. Nato signal potuje do hrbtenjače, kjer je zaradi
pomanjkljive regulacije, posledice bolezenskega stanja, slabo usmerjen in zato povzroči
nekontrolirano in močno reakcijo mǐsice. Moja naloga je bila predlagati model, ki pona-
zarja stanje spastične mǐsice in daje primerljive oblike obnašanja, kot smo jih izmerili pri
različnih bolnikih. Hkrati naj bi podala cenilke, s katerimi bi lahko ločili različne oblike
in stopnje spastičnosti.

Torej sem se poglobila v študij fiziologije, patofiziologije in nevrofiziologije, in v študij

2



obstoječih modelov mǐsic in sklepov. Enosklepni sistem z mǐsicami je zelo nelinearen. Zato
sem lahko izbrala nešteto različnih modelov, ki so vsi po vrsti le delno ponazarjali stvarnost.
Modeliranje je navadno potekalo tako, da je bilo mogoče doseči izbolǰsave z vǐsanjem reda
modela ali vpeljavo dodatnih nelinearnih členov. Vendar le na račun obsežnosti modela, ki
je v glavnem opisoval le neko specifično obliko delovanja sistema. Za novo obliko delovanja
je bilo večinoma potrebno model znova razširjati.

S takim pristopom nisem bila zadovoljna in sem zato nenehno iskala povsem drugačno
rešitev. takšno, ki bi že na začetku izhajala iz stalǐsča, da je glavna lastnost sistema nelin-
earenost. Tako sem prǐsla do Volterra-Wienerjevega pristopa. Ta mi je prvič omogočail,
da sem izhajala iz izmerjenih signalov in si z njihovo analizo pridobivala informacijo o ne-
linearnih dinamičnih lasnostih sistema. Z modelom, ki sem ga predlagala, sem na podlagi
velikosti jeder prvega, drugega, tretjega in vǐsjih redov lahko sklepala o stopnji nelin-
earnosti. Spastičnost sem zato izrazila kot spremembo jakosti posameznih jeder. To je
bila osnova za mojo magistrsko nalogo.

Med pripravo magistrske naloge sem opravljala številne klinične študije v zvezi z vred-
notenjem stopnje spastičnosti in različnih metod za njeno zmanǰsanje, kot tudi študije na
področju celjenja preležanin, rasti ali regeneracije živcev. Do magisterija sem s sodelavci
napisala okoli 10 člankov, en pregledni članek in tri prispevke za monografijo. Veliko sem
tudi potovala in se udeleževala različnih znanstvenih srečanj, tudi kot povabljena preda-
vateljica.

Že pred tem, poleti 1982, je bila na neki vrtni zabavi tudi Olga, ki je zaradi spine
bifide od rojstva na vozičku. V njenem življenju ni bilo opaziti nobene razlike, saj je
hodila v službo, na zabave, v kino. Večkrat sem jo srečala sredi mesta, zabavna in polna
življenja. Na zabavi se je kmalu poslovila. Rekla je, da ima preležanino in da je ne
sme več obremenjevati s sedenjem. V meni se je takoj sprožil mehanizem ’pomagaj’.
Ker sem sklepala, da so mǐsice zadnjice oslabele zaradi zmanǰsane aktivnosti in ker sem
že ugotovila, da je z električnimi tokovi možno mǐsice okrepiti, sem ji predlagala, da bi
poskusili odpraviti njeno preležanino.

Privolila je, in jaz sem se nekaj mesecev temeljito posvetila izbiri parametrov in režima
stimulacije. Poskus sem opravljala zasebno, saj mi ni bila pomembna znanost, temveč
morebiten učinek. Ko sem zaprosila za izposojo stimulatorja, sem profesorju Vodovniku
omenila, zakaj ga nameravam uporabljati. Profesor Vodovnik je bil takoj za to, in tako
smo sestavili natančen protokol dela in izbrali nekaj metod za vrednotenje morebitnega
učinka. S stimulacijo sva začeli proti koncu novembra, med prazniki za takratni Dan
republike. Preležanine so namreč tako trdožive, da se vlečejo mesece ali celo leta, in se
tudi rade ponavljajo. Medicinska sestra, ki je Olgo vsak dan prihajala previjati, nekaj
dni, zaradi praznikov ni prǐsla, jaz pa sem ji rano stimulirala vsak dan. Že čez nekaj dni
so bile spremembe očitne. Najbolj spodbudno je bilo to, da je bila sestra, ki ni vedela za
moje delo, izrazito presenečena nad izbolǰsanjem, saj je bila pripravljena le na poslabšanje
stanja.

Olgina zgodba nas je spodbudila, da smo napisali številne vloge za financiranje raziskav
mehanizmov in učinkov električnih tokov na preležanine. To področje je kmalu postalo
osrednje raziskovalno področje laboratorija za biokibernetiko.

Leta raziskav na področju funkcionalne električne stimulacije, to je uporabe tokov za
izbolǰsanje gibov ali celo izvabljanjE osnovnega vzorca hoje, kot je med tem uspelo pri
nekaj paraplegičnih bolnikih, so namreč prinesla izredno število evidenc, da je z ’elek-
triko’ možno vplivati tudi na strukturo bioloških sistemov, na rast in regeneracijo tkiv.
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Preležanine so se tudi izkazale kot odličen model za preverjanje teh opažanj in hkrati
ponujale možnost za zelo široko uporabnost in koristnost rezultatov študije.

Zopet sem se znašla pri iskanju in gradnji modelov. Morala sem se učiti o fiziološkem
ozadju delovanja tkiv, tkivni presnovi, mehanizmih interakcije tokovi-celice-tkiva, imun-
skih reakcijah in mehanizmih celjenja. Hkrati sem sodelovala pri študiju regeneracije živcev
in se tudi tam ukvarjala z modeliranjem. Oba modela, ’rast mehkih tkiv’ in ’regeneracija
perifernih živcev’, sta postajala izrazito kompleksna in pri modeliranju sem združevala
opis z diferencialnimi enačbami s kvalitativnimi modeli. Modeliranje sem imela predvsem
za orodje za sintezo obstoječega stanja, oziroma predstave o tem, kako potekajo procesi in
kako se izvajajo posamezne funkcije. Zanesljive in jasne rezultate so prinašale le klinične
in fiziološke eksperimentalne študije, saj je vsaka prinesla določeno trdno spoznanje, ka-
menček v mozaiku, ki je nastajal.

Čeprav se med rastjo in regeneracijo tkiv in celic odvijajo številni procesi, sem vedno
verjela, da obstaja skupen mehanizem. Z vidika termodinamike sem si celice in tkiva
predstavljala kot odprte sisteme. Za izbolǰsanje njihove rasti in regenerativnih lastnosti bi
torej morali izbolǰsati proces dovajanja snovi in energije in odvajanja stranskih produktov
celične presnove. Za dovajanje in odvajanje snovi v celice skrbi krvni obtok. Zato sem si
za doktorsko disertacijo zastavila cilj: ugotoviti kako električni tokovi v bližini preležanine
vplivajo na periferni krvni pretok.

Eksperimente sem skrbno načrtovala in poleg merjenja perifernega krvnega pretoka z
laserskim Dopplerjevim merilnikom, sem vključila še merjenje srčne in dihalne aktivnosti.
Hkrati sem beležila električno aktivnost srca (EKG) in spremembe obsega prsnega koša
zaradi dihanja. Želela sem namreč izključiti možnost, da so spremembe, ki bi jih opazila
v perifernem krvnem pretoku, posledica sistemskih sprememb, oziroma sprememb srčne
in respiratorne aktivnosti. Čeprav so do takrat pretok obravnavali le kot neko enosmerno
veličino, ki se sicer v času nekoliko spreminja in jo je zato treba povprečiti, sva s Petrom
Krošljem izbrala analogni izhod inštrumenta, dogradila A/D pretvornik, iz katerega je
bil možen direktni dostop do spomina na računalniku (DMA), in z njim zajemala ’čiste’
signale pretoka EKG-ja in dihanja. Za vzorčno frekvenco sem izbrala 400Hz (pri študuju
posameznih segmentov P-Q-R-S-T kompleksa so signal EKG navadno zajemali s to ali
podobno frekvenco), vendar o frekvenčni vsebini signalov takrat nisem veliko vedela.

Hitro se je izkazalo, da je signal pretoka zelo bogat – vsebuje različne komponente, ki
oscilirajo na različnih časovnih skalah in da se ponavljanje ne dogaja striktno periodično,
temveč variira okoli določene periode za posamezno komponento. Tudi učinki tokov se niso
izražali kot povečanje ali zmanǰsanje pretoka krvi v opazovano področje, temveč kot spre-
membe posameznih, skoraj oscilatornih komponent pretoka. Torej so se učinki pretežno
izražali na dinamičnih lastnostih signalov pretoka in manj na statičnih.

Takoj sem se začela seznanjati z metodami za analizo nelinearnih dinamičnih siste-
mov. Prve eksperimente sem izvedla konec leta 1990, ko so bile raziskave s področja
kaosa na vǐsku. Številni raziskovalci so uporabljali algoritem Grasbergerja in Procaccia
za izračun korelacijske dimenzije – eno izmed meril za vrednotenje stopnje kaotičnosti
sistema. Prvotno sem sama predpostavljala, da bo stanje brez stimulacije najbrž bolj ali
manj kaotično, kot stanje po stimulaciji, in da bo pretok v okolici preležanine glede na
stopnjo celjenja imel večjo ali manǰso korelacijsko dimenzijo.

Vendar sem se začela spraševati, kako določiti optimalno vstavitveno dimenzijo za
izmerjene signale, saj so bili rezultati zelo odvisni od vstavitvene dimenzije. Drugačno
korelacijsko dimenzijo sem dobila, če sem signal vstavila v 16, 20, ali 30-dimenzionalni
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prostor in izrazitega nasičenja ni bilo možno opaziti. Obstajal je sicer določen vzorec,
vendar ga ni bilo možno zanesljivo ’ujeti’. Imela sem dve možnosti:

— zugotoviti, da signal pretoka nima končne dimenzije in da ima lastnosti podobne
šumu, ali

— da ima končno dimenzijo, vendar je ne moremo nedvoumno določiti, ker se dinamične
lastnosti pretoka časovno spreminjajo.

Če sprejmemo drugo možnost, to pomeni, da signali vsebujejo oscilatorne komponente,
ki nimajo konstantne frekvence, temveč tudi frekvence oscilirajo, kot je to zlahka razvidno
pri srčnem ritmu. Torej, sistem je najbrž neavtonomen in so zato metode v faznem pros-
toru, kjer izgubimo informacijo o času, neustrezne za njegovo analizo. V prid oscilatorne
narave procesov je govorilo tudi nešteto fizioloških ugotovitev.

Ker sem tudi pri tej študiji, kot pri vseh preǰsnjih, želela zgraditi matematični model
fizioloških procesov in sistemov, ki sem jih opazovala, sem poiskala izvirne pristope za
študij kompleksnih sistemov. Tako sem se seznanila z deli Prigogena in Hakena in se
navdušila nad idejo, ki je bila v bistvu Hakenove sinergetike. Biološki sistemi so se mi
zdeli naravnost sinergetski: vsak sistem ima v osnovi veliko število prostostnih stopenj,
ko pa se izvaja določena funkcija sistema, se število prostostnih stopenj izrazito zmanǰsa
na tiste, ki so vodilne – agonistične, in tiste ki nasprotujejo – antagonistične. Vse os-
tale stopnje prostosti pa postanejo sinergistične – združijo se bodisi z agonističnimi ali z
antagonističnimi.

Profesorju Hakenu sem pisala marca 1991 in ga v začetku julija, po njegovem povabilu,
obiskala v Stuttgartu. S seboj sem prinesla nešteto izmerjenih časovnih vrst in upanje,
da bom iz njih prej ali slej razbrala osnovne lastnosti sistema, ki jih je ’ustvaril’. To prvo
srečanje je bilo osnova za najino sodelovanje, ki traja še danes. Dogovorila sva se za dalǰsi
obisk in tako sem september in del oktobra istega leta preživela na inštitutu, ki ga je vodil.
Takrat je bilo v njegovi skupini več kot 30 diplomantov, doktorandov in sodelavcev, s tem
pa nešteto možnosti za razprave in nova spoznanja. Tesneje sem sodelovala z Wolfgangom
Lorenzem, ki je analiziral signale EKG-ja in dihanja, ter poskušal določiti vzorce njihovih
medsebojnih sklopitev.

Tudi sama sem z vidika sklopitev analizirala signale, ki sem jih prinesla s seboj. Ugo-
tovila sem, da se srčna in dihalna komponenta nahajata tudi v signalu pretoka in da
so pravzaprav vse frekvenčne komponente zastopane v vseh istočasno izmerjenih signalih
kardiovaskularnega izvora.

Tako sem za doktorat predlagala model sklopljenih oscilatorjev, ki sodelujejo pri regu-
laciji krvnega pretoka. Na časovni lestvici okoli ene minute, kolikor je potrebno, da celotna
količina krvi pri sproščenem človeku obkroži kardiovaskularni sistem, oziroma da jo srce
prečrpa, deluje pet oscilatornih procesov. Ti so z različnimi amplitudami navzoči v vseh
signalih kardiovaskularnega sistema.

Model je v osnovi fenomenološki, vendar nosi sporočilo, da je zdravo stanje določeno z
enim izmed naborov amplitud in frekvenc posameznih oscilatorjev in njihovih medsebojnih
sklopitev, ter da se patološka stanja, ki nastajajo zaradi obolenj, pa tudi vse spremembe v
sistemu, odražajo kot spremenjene amplitude, frekvence in medsebojne sklopitve oscilator-
jev. Za nadaljnjo nadgradnjo modela pa je bilo potrebno ugotoviti točno fiziološko naravo
posameznih oscilatorjev in njihovih sklopitev.

Po doktoratu sem se povsem posvetila rekonstrukciji dinamike kardiovaskularnega sis-
tema. Delo poteka vzporedno na treh področjih, ki se med seboj prepletajo:

— izbira ustreznih metod za analizo kardiovaskularnih signalov;
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— študij fizioloških osnov oscilatorjev in njihovih medsebojnih sklopitev, kot tudi
patofizioloških sprememb, ki jih vnašajo različne bolezni kardiovaskularnega sistema;

— izpopolnjevanje in analiza delovanja matematičnega modela, ki ponazarja sistem
kot sistem sklopljenih oscilatorjev.

Po doktoratu sem ugotovila, da je analiza dinamičnih lastnosti signala EKG že prejmed
znanstveniki, ki so se ukvarjali z analizo časovnih vrst, ki nastajajo kot rezultat delovanja
nelinearnih dinamičnih sitemov izzvala veliko zanimanja . Večina teh študij je slonela na
metodah za analizo v faznem prostoru, saj so tam definirane poglavitne lastnosti sistemov
s kaotično dinamiko. Zato so bila vprašanja, ki so jih raziskovalci zastavljali, v tem: ali je
sistem determinističen, kaotičen, ali morda stohastičen. Hkrati so iskali ustrezno metodo,
ki bi omogočala ločitev bolezenskega od zdravega stanja sistema.

Z raziskavami, ki sem jih opravila v Ljubljani, in pri katerih se mi je pridružilo nekaj
diplomantov, magistrantov in doktorandov, med njimi tudi Maja Bračič, sem vedno želela
izluščiti klinično in fiziološko relevantne informacije o dinamiki sistema. Zato sem se
tudi povezala z nekaterimi kliničnimi in fiziološkimi skupinami v Ljubljani, Oslu, Trømsi,
Malmöju, Rigi, Touluseu, Odenseju in Baslu. Vedno smo skupaj načrtovali eksperimente
in tudi sama sem bila večkrat navzoča, vsaj pri začetnih meritvah.

Poleg korelacijske dimenzije smo vpeljali še izračun lokalnih in globalnih Lyapunovih
eksponentov, Karhunen-Loèvejevo dekompozicijo in druge metode v faznem prostoru. Ven-
dar se je izguba informacije o času vedno odražala tako, da ni bilo mogoče enoumno določiti
optimalne vstavitvene dimenzije prostora. Določitev ustrezne vstavitvene dimenzije za
posamezne signale kardiovaskularnega izvora je po moji presoji še danes odprto vprašanje.
Še več, iskazalo se je, da je treba časovno spremenljivost osnovnih frekvenc upoštevati
kot poglavitno značilnost sistema in zato izbirati metode, ki omogočajo zajeti dinamične
lastnosti sistema ob ohranitvi informacije o času.

Tako smo razvijali in preverjali uporabnost različnih časovno-frekvenčnih metod, kot so
metoda periodogramov s Fourierjevo transformacijo, izračun spektrov na osnovi avtore-
gresijskih modelov izmerjenih signalov, selektivna Fourierjeva transformacija ali valčne
transformacije. Valčna transformacija se je izkazala za izredno uporabno pri analizi oscila-
tornih komponent kardiovaskularnih signalov. Hkrati omogoča kvantitativno vrednotenje
posameznih komponent in s tem ponuja možnost za oceno različnih vplivov in sprememb
stanja sistema.

Z valčno tranformacijo dosežemo tudi logaritmsko frekvenčno rezolucijo, kar nam omogoča
dobro oceno spektralnih komponent na nizkofrekvenčnem področju, na primer oscilacije
s frekvenco okoli 0.01Hz, ki je 100-krat nižja od srčne frekvence. Ob sodelovanju s
kolegi iz Osla smo opravili več eksperimentov, s katerimi smo ugotovili, da oscilacije s
to frekvenco odražajo endotelijsko aktivnost. Endotelij namreč sprošča imunske in cito-
toksične substance in s tem povzroča oscilacije premera žil. Amplitude ali energije, os-
cilatorne komponente s frekvenco okoli 0.01Hz, nam omogočajo neinvazivno opazovanje
delovanja biokemičnih procesov, ki so izrednega pomena za življenje.

Kolikor mi je znano, smo pokazali prvi, da se endotelijska aktivnost odraža oscilatorno,
in tudi to, kje se nahaja njeno frekvenčno področje delovanja. Rezultate smo že objavili v
dveh člankih. Z nadaljnimi raziskavami smo pokazali, da se endotelijska aktivnost značilno
razlikuje pri športnikih v primerjavi s povprečno fizično aktivnimi zdravimi osebami, in o
tem tudi napisali članek, ki smo ga že poslali v objavo. Tako je bilo z analizami, ki izhajajo
iz osnov, ki jih podaja model sklopljenih oscilatorjev, možno kvantitativno pokazati, da je
fizična aktivnost koristna za delovanje kardiovaskularnega sistema. Te študije so nam torej
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dale jasne fiziološke rezultate in zaključke kliničnega pomena, ter tudi nazorno potrjujejo
in dopolnjujejo model.

Obojestransko koristno in plodno sodelovanje s kolegi iz Osla pa poteka še naprej.
Pravkar zaključujemo nekaj študij, s katerimi ugotavljamo vpliv določenih substanc na
oscilacije, ki nastajajo z endotelijsko aktivnostjo. V ospredju našega trenutnega interesa
je dušikov oksid, substanca, ki je v zadnjem desetletju vzbudila izredno pozornost med
fiziologi, farmakologi in kliničnimi zdravniki. (Nobelovo nagrado za medicino so leto 1998
podelili raziskovalcem, ki so ugotovili, da je dušikov oksid tista substanca, ki jo sprošča
endotelij, in vpliva na relaksacijo žil – učinek, ki so ga opazili že nekaj let prej). Če bomo
določili vlogo dušikovega oksida pri oscilacijah perifernega krvnega obtoka, bomo lahko
ponudili neinvazivno metodo za spremljanje njene aktivnosti in vivo. S tem bomo tudi
odprli izredne možnosti za raziskave vpliva dušikovega oksida pri različnih obolenjih in pa
za ugotavljanje vpliva različnih substanc in zdravil na njegovo aktivnost.

Posvetili smo se tudi ugotavljanju fiziološke osnove ostalih nizkofrekvenčnih oscilacij
v kardiovaskularnih signalih, predvsem miogenega in nevrogenega izvora. Indirektno smo
pokazali, da imajo oscilacije zaradi intristične aktivnosti gladkih mǐsic v stenah žil, oziroma
miogene oscilacije, frekvenco okoli 0.1Hz in smo tudi o tem objavili članek. O vpletenosti
somatskega sistema v oscilacije kardiovaskularnih funkcij smo s kolegi iz Malmöja napisali
članek in ga poslali v objavo. Podobne rezultate smo prej, s sodelovanju kolegov na
Inštitutu za patofiziologijo v Ljubljani, dobili pri podganah in jih tudi že objavili.

Prispevke posameznih oscilatornih komponent smo analizirali pri bolnikih s kardio-
vaskularnimi obolenji, kot so osebe po akutnem infarktu srčne mǐsice, osebe z diabetesom
tipa II, ali osebe z Raynauldovo boleznijo. Dokazali smo, da se prispevki nizkofrekvenčnih
komponent, ki jih je zaenkrat mogoče ustrezno določiti le z valčno transformacijo, katero
smo prvi vpeljali pri analizi kardiovaskularnih signalov, značilno spremenijo pri določeni
bolezni. Rezultati, ki smo jih že objavili, podajajo nov vpogled v fiziologijo in patofiziologijo
teh bolezni in tudi omogočajo vrednotenje stopnje nastalih sprememb in učinkov različnih
zdravil. Na primer, v študiji, ki smo jo začeli med mojim bivanjem poleti 2000 v Lancastru,
ugotavljamo vpliv β-blokatorjev na oscilacije v kardiovaskularnih funkcijah (spremenljivost
srčnega ritma, spremenljivost sistoličnega, diastoličnega in srednjega krvnega pritiska, ter
perifernega krvnega pretoka in temperature kože) pri bolnikih, s srčnim popuščanjem.

Dve podobni, zelo obsežni klinični študiji pravkar potekata tudi v Ljubljani. Hkrati
zajemamo 12 različnih signalov kardiovaskularnega izvora. Rezultate obsežnih obdelav z
metodami, ki jih razvijamo, bomo primerjali s številnimi kliničnimi preizkavami in po-
datki o bolnikih. Poiskati želimo značilne dinamične lastnosti in nastale spremembe kar-
diovaskularnih parametrov pri osebah po akutnem infarktu srčne mǐsice in pri bolnikih
z diabetesom tipa II. Pri študijah sodelujejo tudi zdravniki internisti in diabetologi, dr.
Dušan Štajer, dr. Vilma Urbančič-Rovan in dr. Katja Ažman Juvan. S skupino zdravih
oseb, ki smo jih že izmerili za kontrolo, bomo v okviru teh dveh študij vključili okoli 300
oseb. Obe študiji sta zasnovani na zelo vzpodbudnih rezultatih obdelave signalov, ki smo
jih pred časom izmerili na manǰsem številu bolnikov z istimi obolenji.

Poleg časovno-frekvenčnih metod uporabljamo tudi metode za analizo sinhronizacije
med posameznimi oscilatornimi komponentami. Pri tem uporabljamo novo medoto za
analizo sinhronizacije med nestatcionarnimi, zašumljenimi in kaotičnimi procesi, ki je
rezultat teoretičnih raziskav v zadnjih petih letih. Določamo časovni potek relativne med-
sebojne fazne razlike tako pri zdravih osebah kot pri obolelih oz. v različnih stanjih
sistema. Eden od rezultatov je tudi ugotovitev, da je stopnja sinhronizacije med srčnim in
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respiratornim ritmom med anestezijo povezana z globino anestezije. Še več, spremembe v
relativni fazi, ki smo jih opazili med anestezijo, so podobne spremembam, ki so jih opazili
v fizikalnih sistemih, kot so laserji. Naša študija kardiorespiratorne sinhronizacije med
anestezijo ima torej, poleg izjemnega kliničnega pomena tudi dodaten pomen: nazorno
kaže na to, da ima kardiovaskularni sistem lastnosti ’klasičnih’ fizikalnih sistemov, četudi
je zelo kompleksen.

Raziskave smo opravili na podganah in rezultate opisali v članku, ki je bil objavljen
lani v PRL, odmevi na članek pa v decembrski številki Physics Today. Pred anestezijo
se sistema le občasno sinhronizirata. Po vbrizgu anestetika pa opazimo serijo prehodov:
najprej dva srčna utripa na eno periodo dihanja, nato trije, štirje in pet. Ko se vpliv
anestetika zmanǰsa, se prehodi odvijajo v obratnem vrstnem redu in na koncu nastopi
enako stanje kot pred vbrizgom anestetika. Prehodi so ponovljivi, in smo jih opazili tudi
pri ponovni anesteziji teden dni pozneje.

Z nadaljnjimi poskusi nameravamo raziskati, ali je možno z določanjem stopnje sinhro-
nizacije med srčnim, respiratornim in somatskim sistemom sproti ugotavljati in določati
globino anestezije. Pokazali smo tudi, da je vzorec frekvenčne modulacije in sinhronizacije
porušen pri bolnikih z diabetesom, spremenjen pri športnikih ali pa povsem izključen v
komi.

V zadnjem času smo začeli tesno sodelovati z Oddelkom za fiziko na Univerzi v Lan-
castru. Kupili so dve napravi petkanalnih ojačevalnikov za kardiovaskularne signale, ki
smo jih razvili v Ljubljani ob sodelovanju z Jankom Petrovčičem z Odseka za računalnǐsko
avtomatizacijo in regulacije na Inštitutu Jožef Stefan. Postavili so dva merilna sistema z
enakimi senzorji kot jih že uporabljamo v Ljubljani in izvajajo podobne meritve in študije
na zdravih osebah in na bolnikih s popuščanjem srca.

Hkrati smo model sklopljenih oscilatorjev razširili za vpliv fluktuacij in šuma ter
raziskali nekatere njegove dinamične lastnosti. O tem smo naisali dva članka, ki smo
jih že poslali v objavo. Pokazali smo, da je z modelom možno ponoviti osnovne značilnosti
spektrov izmerjenih signalov. Na modelu smo tudi pokazali, da se dva oscilatorna sistema
lahko sinhronizirata ob prisotnosti šuma in da gre v sistemu najbrž za kombinacijo med lin-
earno in parametrično sklopitvijo med oscilatorji. Naravo mesebojnih sklopitev poskušamo
določiti z dodatnimi eksperimentalnimi študijami in z analizo izmerjenih signalov, kot tudi
z nadaljnjimi analizami modela.

Model sklopljenih oscilatorjev in rezultati analiz, ki nastajajo na osnovi predstave
sistema, ki jo ponuja model, pridobivajo vse večjo odmevnost. Tako sem letos povabljena
na pet znanstvenih srečanj, na enega skupaj z Majo Bračič.

Model postaja zelo zanimiv tudi za fizike in matematike. V okviru projekta Intas
o dinamiki sklopljenih oscilatorjev, ki je pravkar sprejet, bomo poleg dinamike laserjev,
kot primera tehnoloških oscilatornih sistemov obravnavali model sklopljenih kardiovasku-
larnih oscilatorjev kot primer naravnih oscilatornih sistemov. V projekt je vključenih
10 skupin, ki bodo raziskovale skupne značilnosti kompleksnega obnašanja oscilatornih
sistemov. Številna vprašanja, ki jih bomo obravnavali, izhajajo iz analize signalov kar-
diovaskularnega izvora. S pridobljenimi spoznanji bomo analizirali in dograjevali model,
ki podaja sintezo bogatih značilnosti kardiovaskularnega sistema kot sistema sklopljenih
oscilatorjev.

Lancaster, 17. maja 2001
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I am working on processing the signals of physiological origin, especially those related
to the blood flow dynamics. To gain an insight into the dynamics of the cardiovascular
system, both linear and nonlinear system theory are applied to measured time series.
So far, the majority of my work is related to calculating the Lyapunov exponents of the
system from the measured time series of blood flow, the wavelet based analysis of
cardiovascular signals and the analysis of cardio-respiratory coupling.

 

The  
Lyapunov  
exponents 

The Lyapunov exponents measure the rate of convergence or divergence of nearby
trajectories in the phase space. They were first introduced by A.M. Lyapunov at the end
of last century, but became widely used in the past decade. This is partly due to the
development of very fast computers and partly to increasing interest in chaotic
dynamics. Namely, a positive exponents indicates sensitive dependence on initial
conditions. Learn more about the exponents

The existing algorithms for the estimation of Lyapunov exponents from time series
have free parameters. Since there are no analytical criteria for parameter settings, we
have analyzed the effect of each parameter to the results for various chaotic and
quasi-periodic test signals.

For a wide range of parameter values the exponents of the blood flow signals of
various subjects appear in pairs consisting of a positive and negative exponent.
Typically, 4 or 5 pairs and a zero exponent are found. The presence of a zero exponent
implies the deterministic nature of the cardiovascular system on the time scale of
minutes.

Lyapunov exponents provide essential information for the system characterization from
measured signal. However, the application of this algorithm to numerous signals is
limited by the time-consuming parameter settings.

 

The wavelet  
analysis 

It is known that cardiovascular control mechanisms manifest themselves through
rhithmic activities. Various techniques of spectral analyses have been applied to blood
pressure and heart rate variability (HRV) signals. Besides the respiratory (HF)
fluctuations, fluctuations around 0.1 Hz (LF) and below 0.05 Hz (VLF) were revealed.

There are two major problems related to the frequency analysis of cardiovascular
signals:

the time-varying nature of characteristic frequencies which demands an analysis
in the time-frequency domain, and
the relatively broad frequency band on which characteristic peaks are expected
which raises the problem of the time and frequency resolution.

In the time-frequency analysis, a window of fixed length is shifted along the signal to
achieve time localization and the frequency content of each window is evaluated. The
window length determines the time and frequency resolution. The choice window length

http://www.fen.bris.ac.uk/engmaths/research/nonlinear/faq-Contents.html
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is a trade-off between time and frequency resolution. If both low and high frequencies
with different time spans are to be simultaneously detected in a signal, the choice
might be a puzzling one. To overcame this difficulty, the wavelet analysis was
introduced.

The wavelet analysis is a scale-independent method. The window is not only translated
along the signal, but it is also scaled. High frequency components are analyzed by a
short window, while longer windows are used for low frequency components. In this
way, good frequency resolution for low frequencies and good time resolution for high
frequencies are obtained.

Some results of the wavelet analysis of cardiovascular signals are available on the
group page.

 

Cardio-  
respiratory  

coupling 

The cardiac and respiratory systems do not act independently, they influence each
other by several mechanisms. For example, the heart rate increases during inspiration
and decreases during expiration. This respiratory modulation of heart rate, known as
respiratory sinus arrhythmia (RSA), was observed as early as in 1847. During the past
few years, another phenomenon that arises from the coupling between both systems
was revealed -- the adjustment of their rhythms or synchronisation.

We have found short episodes of synchronisation or entrainment of cardiac and
respiratory rhythms in healthy relaxed subjects. We may infer that a coupling between
heart and respiratory systems that enables synchronisation exist. Synchronisation,
however, is not a state of the system, but a process of the adjustment of rhythms. The
two interacting systems are not isolated and face the influence of other physiological
systems. Their impact may change the stability or even existence of phase locked
solutions.

More about the cardiorespiratory interaction can be found in my PhD thesis Couplings
among subsystems that regulate blood flow.
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Published  
Papers 

M. Bracic and A. Stefanovska, Lyapunov exponents of quasi-periodic flows.
Elektrotehnical Review 63, 29-37, 1996.

M. Bracic and A. Stefanovska, Local and global Lyapunov exponents of blood
flow, Open Sys. & Information Dyn. 4: 435-456, 1997.

Abstract: The Lyapunov exponents are calculated from numerically simulated and measured time series. The
existing algorithms for the estimation of Lyapunov spectra have free parameters. Hence, their
influence is analysed on various chaotic and quasi-periodic simulated signals. Furthermore, the
exponents of blood flow signal, measured on a healthy subject, are calculated over a wide range of
parameter values. For embedding dimension d >= 10 two typical spectra are observed for both the
global and the local Lyapunov exponents. Either we have 4 paired and 1 zero, or 5 paired
exponents. At least one exponent equals zero within calculation error.

File: zip compressed: osljap.zip (433 kB)

M. Bracic and A. Stefanovska,Lyapunov exponents of simulated and measured
quasi-periodic flows, A Chapter of A. Prochazka, J. Uhlir, P.J. Rayner, N.G.
Kingsbury, Signal analysis and prediction, 479-488, Birkhauser, Boston, 1998.

Abstract: The Lyapunov exponents are calculated from numerically simulated and measured signals. The
existing algorithms for their estimation have free parameters and their impact and the impact of
noise are analysed on quasi-periodic simulated signals. Furthermore, calculation of the exponents of
blood flow signal, measured on a healthy subject, is presented. Over a wide range of parameter
values two typical patterns of both the global and the local Lyapunov exponents are obtained. Either
we have four paired and one zero exponent, or five paired exponents. This may be an indication of
the deterministic and almost conservative nature of the system governing the blood circulation on
the time scale of minutes.

File: zip compressed: praga.zip (122 kB)

M. Bracic and A. Stefanovska, Nonlinear dynamics of the blood flow studied by
Lyapunov exponents, Bulletin of Mathematical Biology, 60, 417-433, 1998.

Abstract: In order to gain an insight into the dynamics of the cardiovascular system throughout which the
blood circulates, the signals measured from peripheral blood flow in humans are analysed by
calculating the Lyapunov exponents. Over a wide range of algorithm parameters, paired values of
both the global and the local Lyapunov exponents are obtained, and at least one exponent equals
zero within the calculation error. This may be an indication of the deterministic nature and finite
number of degrees of freedom of the cardiovascular system governing the blood flow dynamics on
the time scale of minutes. A difference is observed in the Lyapunov dimension of controls and
sportsmen.

File: zip compressed: bmbljap.zip (1.01 MB)

M. Bracic and A. Stefanovska, Wavelet based analysis of human blood flow
dynamics,Bulletin of Mathematical Biology, 60, 919-935, 1998.

Abstract: To analyse signals measured from human blood flow in the time-frequency domain, we used the
wavelet transform which gives good time resolution for high frequency components and good
frequency resolution for low frequency components. We have introduced several time and spatially
invariant measures which characterise the dynamics in the time-frequency domain. They were used
to compare the time-frequency content of blood flow signals belonging to control subjects and
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athletes. Some statistically significant differences between the two groups are discussed.

File: zip compressed: bmbwav.zip (679 kB)

H. D. Kvernmo, A. Stefanovska, M. Bracic K. A. Kirkeboen and K. Kvernebo,
Spectral Analysis of the laser Doppler perfusion signal in human skin before and
after exercise, Microvascular Research, 56, 173-182, 1998.

A. Stefanovska and M. Bracic, Physics of the human cardiovascular system,
Contemporary Physics, 40, 31-55, 1999.

A. Stefanovska and M. Bracic, Reconstructing cardiovascular dynamics, Control
Engineering Practice, 7, 161-172, 1999.

Abstract: The signals which originate from the human cardiovascular system were analysed using methods of
both linear and nonlinear system theory. The analyses in the time domain and in the phase space
revealed the deterministic and almost conservative nature of the cardiovascular control system on
the time scale of minutes. Five characteristic frequencies were found in the signal of peripheral blood
flow. Some of them were already found in other cardiovascular functions, the breathing, blood
pressure, ECG and IHR. Each characteristic peak reflects the periodic action of one of the
subsystems, involved in the regulation of the blood flow. These systems are mutually dependent via
the couplings among them. Their strength plays an essential role in the performance of the system.
In some cases their importance is indicated, thus pointing to the practical application in the diagnosis
and prediction of cardiovascular functions.

File: zip compressed: cep.zip (1.40 MB)

A. Stefanovska, M. Bracic, P. Leger, T. Bracic, H. Boccalon and P. Bendayan,
Linear and nonlinear analysis of resting blood flow signal in healthy subjects
and subjects with Raynaud`s phenomenon, Technology and Health Care, 7, 225-
241, 1999.

M. Bracic and A. Stefanovska, Wavelet analysis in studying the dynamics of
blood circulation, Nonlinear Phenomena in Complex Systems, 2:1, 68-77, 1999.

Abstract: To analyse signals, related to the human cardiovascular system in the time-frequency domain, we
used the wavelet transform which gives good time resolution for the high frequency components and
good frequency resolution for the low frequency components. Peaks at approximatelly the same
frequencies were found in all signals revealing their common origin. Further, we hypothessise that
peaks which appear at exactly the same frequencies in all signals measured from the one subject
reflect the action of central regulatory mechanisms, whilst other have a local origin.

File: zip compressed: oswav.zip (1.28 MB)

A. Stefanovska, S Strle, M. Bracic and H. Haken, Model synthesis of the coupled
oscillators which regulate human blood flow dynamics, Nonlinear Phenomena in
Complex Systems, 2:2, 72-78, 1999.

A. Stefanovska, M. Bracic and H.D. Kvernmo, Wavelet analysis of oscillations in
the peripheral blood circulation measured by laser Doppler technique, IEEE
Transactions on Biomedical Engineering, 46, 1230-1239, 1999.

Abstract: Oscillations in the peripheral blood flow signal, measured by laser Doppler flowmetry, extend over a
wide frequency scale and their periods vary in time. Therefore, a time-frequency method with
logarithmic frequency resolution, namely the wavelet transform, was used for their analysis. In this
way, frequencies between 0.0095 Hz and 1.6 Hz were studied. On this scale, five characteristic
oscillations were revealed resulting from both local and central regulatory mechanisms. We discuss
endothelial activity as a possible mechanism of the rhythmic process with a characteristic frequency
of around 0.01 Hz. Furthermore, we illustrate the potential of laser Doppler flowmetry combined with
dynamics analysis for studies of both the micro- and macroscopic mechanisms of blood flow
regulation in vivo.

M. Bracic, P. V. E. McClintock and A. Stefanovska, Characteristic frequences of
the human blood distribution system, In: D. S. Broomhead, E. A. Luchinskaya, P. V.
E. McClintock and T. Mullin, Stochastic and chaotic Dynamics in the lakes: STOCKAOS,
AIP Conference Proceedings, Ambleside, United Kingdom, 146-153, 1999.

M. Bracic Lotric, A. Stefanovska, Synchronization and modulation in the human
cardiorespiratory system, Physica A, 283, 451-461, 2000.

M. Bracic Lotric, A. Stefanovska, D. Stajer and V. Urbancic-Rovan, Spectral
components of heart rate variability determined by wavelet analysis, Physiol.
Meas., 21, 441-457, 2000.
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Enhanced endothelial activity reflected in cutaneous blood
flow oscillations of athletes
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Abstract Functional alterations of vascular endothelial
cells may be evaluated by analysing differences in effects
of endothelium-dependent [acetylcholine (ACh)] and
endothelium-independent [sodium nitroprusside (SNP)]
vasodilators. We evaluated whether a dynamic approach
using spectral analysis of the blood flow signal, resulting
from the cutaneous red cell flux and recorded by the
technique of laser Doppler flowmetry (LDF), can detect
higher endothelial responsiveness in trained versus less
trained individuals. There was a 1.6 times higher ACh-
induced cutaneous perfusion in athletes than in controls
(P<0.05), both when evaluated as a mean value of the
LDF signal or as the amplitudes of its spectral compo-
nents. In the frequency interval from 0.009 to 1.6 Hz,
ACh induced a 1.6 times higher average spectral
amplitude (P<0.01) in athletes compared with controls.
ACh also induced a 1.6 times higher absolute spectral
amplitude of the oscillator at around 0.01 Hz (P<0.05)
in the athletes compared with the controls, whereas the
endothelial oscillation at around 0.01 Hz during basal
unstimulated perfusion was 1.5 times higher (P<0.01).
There were no significant differences in absolute or re-
lative amplitude during iontophoresis with SNP. These
results indicate that athletes have higher endothelial
activity than less trained individuals.

Keywords Acetylcholine Æ Endothelium-mediated
vasodilatation Æ Oscillations Æ Spectral analysis Æ
Wavelet transform

Introduction

The vascular endothelium plays an important role in
the regulation of blood pressure and flow by releasing
vasoactive substances, such as nitric oxide (NO) and
prostaglandins (Vallance et al. 1989). In exercise-
trained subjects, vascular responsiveness to endothe-
lium-dependent vasodilators has been shown to be
enhanced in skeletal muscle (Delp 1995; Kingwell et al.
1996) and in cutaneous vasculature (Kvernmo et al.
1998a).

Analysis of periodic oscillations in cutaneous blood
flow as measured by laser Doppler flowmetry (LDF) is
introduced for evaluation of microvascular control
mechanisms (Intaglietta 1989; Stefanovska 1992; Bol-
linger et al. 1993; Stefanovska and Kroselj 1997;
Kvernmo et al. 1998b, 1999). The fifth and slowest
periodic oscillation (0.01 Hz) is considered to be
modulated by the vascular endothelium, and may be
assessed by the difference in effects of endothelium-
dependent and endothelium-independent vasodilators
on the blood flow oscillations of this frequency
(Kvernmo et al. 1999).

The present study evaluates whether analysis of
spectral amplitudes based on wavelet transformation
can detect an enhanced vascular responsiveness to
endothelium-dependent vasodilators in the cutaneous
vasculature of exercise-trained subjects and whether this
approach may increase information on mechanisms
underlying blood flow regulation.

Methods

The study included nine male long-distance runners and a control
group of nine healthy male soldiers (Table 1). The subjects had
not taken any medication in the week prior to the study and
were not smokers. Subjects with a history of chronic disease were
not included. After being informed of the study design, the
subjects gave written consent as approved by the local Ethics
Committee.
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Procedures

Maximal oxygen uptake ( _VV O2max) was measured with the use of a
Sensor Medics analyser (MMC Horizon System, USA). Heart rate
was recorded using an electrocardiograph (Sirekust 341, Siemens,
Germany). Subjects refrained from strenuous exercise for 24 h
prior to the study. Food intake was a light meal 2 h prior to the
test. LDF was carried out in a room with temperature at 22 (21–
23)�C with the subject supine. At least 20 min were allowed for
equilibration to the conditions. Skin temperature was measured
using a digital skin thermometer (Fluke 2190, John Fluke, USA).

Laser Doppler flowmetry

LDF gives a semiquantitative assessment of microvascular red cell
flux, which is expressed in arbitrary units (AU) (Nilsson et al.
1980). The LDF recorded from the skin of the forearm reflects
perfusion in capillaries, arterioles, venules and dermal vascular
plexa. A minor part of the signal reflects nutritive perfusion, while
the major part is thermoregulatory perfusion (Bollinger et al. 1991).
In the present study the perfusion was recorded with a single
channel flowmeter (MBF 3D, Moor Instruments, Axminster, De-
von, UK), by an optical fibreprobe (P10A, Moor Instruments)
which has two fibres: one delivers light (a near-infrared laser diode
with a power of 1.0 mW at a wavelength of 780 nm) to the site
under observation, and the other fibre collects the backscattered
light which contains the Doppler shifted frequency information.
The signal is filtered with cut-off frequencies at 18 Hz and
22.5 kHz. A sampling frequency of 40 Hz and a time constant of
0.1 s were selected.

Iontophoresis

Iontophoresis allows polar drugs to cross the skin barrier by using
a small direct current and assesses microvascular reactivity while
perfusion is measured (Müller et al. 1987; Westermann et al. 1988;
Andreassen et al. 1998; Kvernmo et al. 1998a). A probeholder for
iontophoresis and perfusion measurement (Moor Instruments) was
fixed with a double-sided adhesive tape on the volar side of the
right forearm after the skin was cleaned. The probeholder had a
chamber for deposition of the test substances in proximity to the
laser Doppler probe (‘‘direct chamber’’). A battery powered con-
stant current stimulator (MIC 1, Moor Instruments) was used. A
1% solution of acetylcholine (ACh) (E. Merck, Germany) or so-
dium nitroprusside (SNP) (E. Merck) was used. For ACh, anodal
current was used, and for SNP, a cathodal current was applied
(Müller et al. 1987; Westermann et al. 1988). The reference elec-
trode was attached to the wrist of the right arm.

The dose of drugs administered by this technique is propor-
tional to the total charge (Q) in millicoulombs (mC), i.e. product of
current (I) in milliamperes (mA) and the duration (t). To avoid
stimulation of sensory nerves, currents of less than 0.20 mA and
total charge of less than 8 mC were used (Westermann et al. 1988).
Dose–response curves were obtained for both ACh and SNP using
charges in a sequence of 0.75 mC (0.075 mA for 10 s), 1.5 mC

(0.15 mA for 10 s), 3.0 mC (0.15 mA for 20 s) and 6.0 mC
(0.20 mA for 30 s) with a response period of 300 s after each dose.
These charges produced a stepwise increase in laser Doppler per-
fusion, achieving a maximum response at 6.0 mC.

Blood perfusion recordings were analysed during unstimulated
conditions and during iontophoresis with ACh or SNP (Fig. 1).
Each of the three recordings was of 1,330 s duration with 40 data
points each second, giving a total of 53,200 measurements for each
of the recordings. Prior to each measurement session, the LDF
probe was calibrated using a standard aqueous suspension of
microspheres (Flux Standard, Moor Instruments). ACh and SNP
were applied at different sites separated by at least 5 cm. The
chamber allowed a skin area of 0.64 cm2 to be treated.

Spectral analysis

The oscillations of the microvascular blood perfusion signal can
be divided into different components by spectral analysis (Meyer
et al. 1988; Intaglietta 1989; Hoffmann et al. 1990; Stefanovska
1992; Bollinger et al. 1993; Mück-Weymann et al. 1996). From
the LDF curve (Fig. 2a), a three-dimensional picture was ob-
tained with frequency, amplitude (AU) and time as the axes
(Fig. 2b). In addition, the time–frequency representation of the
local maxima (Fig. 2c) and the time average of the amplitude as a
function of frequency (Fig. 2d) were used. Analysis of short seg-
ment signal recordings (seconds) shows distinct frequency peaks

Table 1 Anthropometric and
performance data of athletes
and controls. _VV O2max Maximal
oxygen uptake; _VV O2 80% 80%
of maximal oxygen uptake;
MAP mean arterial blood
pressure. Data are medians and
ranges

*P<0.05 and #P<0.0001

Athletes (n=9) Controls (n=9)

Age (years) 26 (18–32) 20 (19–21)*
Body mass (kg) 76 (70–79) 75 (70–90)
Height (cm) 187 (171–192) 180 (176–197)
Heart rate (beats min)1) 51 (44–60) 57 (51–72)*
MAP (mmHg) 106 (87–113) 91 (79–100)*
Skin temperature (�C) 33.1 (32.3–34.9) 33.4 (32.1–34.4)
_VV O2max (ml kg)1 min)1) 68.9 (62.0–73.0) 51.5 (44.4–61.4)#
Running velocity at _VV O2 80% (m min)1) 227 (217–243) 177 (143–198)#

Fig. 1 A laser Doppler flowmetry recording on human forearm
during a unstimulated blood perfusion, during iontophoresis with b
acetylcholine (ACh) and c sodium nitroprusside (SNP) recorded
over a period of 1,330 s in arbitrary units (AU)
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around 1 and 0.2 Hz. These represent the heart rate and the
respiratory component of the blood flow signal. In analysis of
longer recordings (minutes) these peaks spread out and appear
less distinct due to natural variability in their generation. How-
ever, analysis of longer segment recordings improves low-fre-
quency resolution. Wavelet analysis proposed by Morlet (1983) is
a scale-independent method that involves an adjustable window
length. Hence, the low frequencies are analysed using a long
window and the higher frequencies using a shorter window. In the
present study the wavelet transform of 22-min recordings was
calculated and periodic oscillations with five characteristic fre-
quency peaks were observed within the frequency interval 0.009–
1.6 Hz. The position of each peak differs between subjects and
changes with time in a given subject, but they are found to be
within the following frequency intervals: 0.009–0.02, 0.02–0.06,
0.06–0.16, 0.16–0.4 and 0.4–1.6 Hz. The average amplitude of the
oscillations of the total spectrum from 0.009–1.6 Hz and the
absolute amplitude within each of the five frequency intervals
were calculated. We then normalised the absolute amplitude
within a particular frequency interval with respect to the average
amplitude of the entire spectrum. In this way we defined the
relative amplitude as the ratio between the absolute amplitude
within a particular frequency interval and the average amplitude
of the entire spectrum (Fig. 3).

Statistical analysis

Data are presented either as median with range, or as box plots.
The five horizontal lines shown in the boxes are the 10, 25, 50, 75
and 90th percentiles: Values above or below the 10th and 90th
percentile are presented as data points. The Wilcoxon signed-rank
test was used to evaluate differences in ACh and SNP responses,
whereas differences between the groups in unstimulated blood flow
and responses to ACh and SNP were evaluated by the Mann-
Whitney test with two-sided critical values. Statistical significance
was defined as P<0.05.

Results

Resting heart ratewas lower in the athletes comparedwith
the controls, whereas mean arterial pressure was slightly
higher. There was no significant difference in skin tem-
perature between the two groups of subjects (Table 1).

Fig. 2 The laser Doppler perfusion signal where the perfusion
values are normalised to zero (a), the wavelet transform (b), local
amplitude maxima (c) and average spectrum (d) of the laser
Doppler perfusion signal recorded in arbitrary units (AU), where
b–d are shown on a log scale

Fig. 3 An example of the spectrum of a laser Doppler perfusion
during a unstimulated blood perfusion, during iontophoresis with b
ACh and c SNP recorded over a period of 1,330 s in arbitrary units
(AU). The vertical lines indicate the outer limits of each frequency
interval

Table 2 Average values and the average spectral amplitude in
athletes and controls. The average values and the average spectral
amplitude of the total spectrum from 0.009 to 1.6 Hz of the
unstimulated cutaneous perfusion signal, and during iontophoresis
with acetylcholine (Ach) and sodium nitroprusside (SNP), recorded
in arbitrary units (AU). Data are given as medians and total ranges

Athletes (n=9) Controls (n=9) P value

Average values
Unstimulated 5.8 (3.7–9.2) 3.5 (2.4–5.3) <0.001
With Ach 27.2 (14.3–45.1) 16.8 (5.9–26.6) <0.02
With SNP 27.9 (9.4–36.3) 27.9 (14.8–50.8) <0.5

Average spectral amplitude
Unstimulated 0.72 (0.40–1.20) 0.28 (0.22–0.39) <0.0001
With Ach 1.69 (1.01–2.54) 1.05 (0.42–1.71) <0.01
With SNP 1.81 (0.76–2.56) 1.67 (0.77–3.46) <0.5
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Cutaneous perfusion

The athletes had higher unstimulated cutaneous perfu-
sion than the controls (Table 2). Also the perfusion re-
sponses evoked by ACh increased to a higher level in the
athletes than in the controls, whereas no significant
difference was observed with respect to SNP (Table 2).

Spectral amplitudes of the LDF signal

Average spectral amplitude of the total spectrum
from 0.009 to 1.6 Hz

The spectral amplitude under the unstimulated condi-
tion was higher in athletes than in controls (P<0.0001)
(Table 2). Likewise, ACh evoked higher values in ath-
letes than in controls (P<0.01), whereas no difference
was observed with SNP stimulation.

Contribution of the different periodic oscillations

Under the unstimulated condition, athletes had higher
absolute amplitude than the controls in the frequency
bands with peak amplitudes at around 1, 0.04 and
0.01 Hz (P<0.0001, P<0.05 and P<0.01, respectively)
(Fig. 4a). The relative amplitudes under the unstimu-
lated condition uncovered differences between the two
groups at four of the periodic oscillations, where athletes
had lower amplitudes of the oscillations with peak
amplitude at around 0.3, 0.1 and 0.04 Hz (P<0.01,
P<0.05 and P<0.05, respectively) than controls,
whereas athletes had higher values for oscillations with a

peak amplitude at around 1 Hz (P<0.05) (Fig. 4b). In
addition, athletes had higher absolute amplitude during
iontophoresis with ACh than the controls in the fre-
quency band with peak amplitude around 1 and 0.01 Hz
(P<0.01 and P<0.05) (Fig. 5a), whereas the relative
amplitude of oscillations with a peak amplitude at
around 0.3 Hz was lower (P<0.0001) and for oscillation
at around 1 Hz (P<0.05) it was higher (Fig. 5b). We
found no significant differences in absolute or relative
amplitude during iontophoresis with SNP between the
athletes and the controls (Fig. 6).

Discussion

This study indicates that enhanced responsiveness of the
vascular endothelium is induced by physical training and
that this enhanced endothelial activity may be evaluated
by the dynamic approach of spectral analysis based on
wavelet transformation of periodic oscillations in the
cutaneous LDF signal.

Oscillations modulated by vascular endothelium

A major finding was a higher ACh-induced cutaneous
perfusion both in average and dynamic values in the
athletes compared with the controls. The latter was
demonstrated by a higher average spectral amplitude
and absolute amplitude of the oscillations at around
0.01 Hz in athletes compared with their controls.

ACh acts indirectly on vascular smooth muscle cells,
via the production of endothelial factors, whereas SNP

Fig. 4 The absolute (a) and relative (b) amplitude for five
frequency intervals in the frequency spectrum from 0.009 to
1.6 Hz of the laser Doppler perfusion signal in less trained subjects
(open symbols) and athletes (filled symbols) for unstimulated blood
perfusion recorded in arbitrary units (AU). The five horizontal lines
on the boxplot show the 10, 25, 50, 75 and 90th percentiles. The
values above or below the 10th and 90th percentiles are represented
as data points. P values are given on the figure

Fig. 5 The average (a) and relative (b) amplitude for all five
frequency intervals in the frequency spectrum from 0.009 to 1.6 Hz
of the laser Doppler perfusion signal in controls (open symbols) and
athletes (filled symbols) during iontophoresis with ACh in arbitrary
units (AU). The five horizontal lines on the boxplot show the 10,
25, 50, 75 and 90th percentiles. The values above or below the 10th
and 90th percentiles are represented as data points. P values are
given on the figure
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is an endothelium-independent vasodilator that acts di-
rectly on smooth muscle cells (Rapoport et al. 1983).
ACh has been used to demonstrate impaired endothe-
lium-mediated vasodilatation in diabetes mellitus,
essential hypertension, hypercholesterolaemia, heart
failure and atherosclerosis (Drexler 1997; Andreassen
et al. 1998). The higher ACh-induced cutaneous perfu-
sion among the athletes compared with the controls seen
in the present study is in agreement with enhanced
endothelial responses among athletes compared with less
trained subjects (Kvernmo et al. 1998a). These results
indicate that regular exercise induces an enhanced
endothelial capacity for vasodilatation, which in skeletal
muscles may result in an enhanced oxygen delivery due
to a decrease in vascular resistance.

Endothelial function may be evaluated non-inva-
sively by analysing the periodic oscillations in the cuta-
neous circulation by spectral analysis based on a wavelet
transformation (Kvernmo et al. 1999). Whereas the four
fastest oscillations are influenced by the heart beat,
respiration, intrinsic myogenic activity of vascular
smooth muscle, and neurogenic activity on the vessel
wall, the fifth and slowest oscillation (0.01 Hz) is mod-
ified by the microvascular endothelium (Kvernmo et al.
1999). This was revealed by Kvernmo et al. (1999) or in
the present study by evaluating the effect of ACh and
SNP on the periodic oscillations of the cutaneous per-
fusion. Our finding suggests that the activity of the
vascular endothelium is an almost periodic phenomenon
with a repetition time of approximately 1 min. The
higher peak amplitude at around 0.01 Hz evoked by
ACh indicates enhanced endothelial vasodilator prop-
erties among athletes. A higher peak amplitude of the
endothelial oscillations at around 0.01 Hz in athletes

was also demonstrated in unstimulated perfusion, which
illustrates the consistency of the results.

To evaluate whether physical conditioning makes
vascular smooth muscle cells more sensitive to NO, we
compared the vasodilatation response to an NO donor
(SNP) in athletes and controls. SNP evokes vascular
relaxation by increasing guanosine 3¢,5¢-cyclic mono-
phosphate (cGMP) in vascular smooth muscle cells
(Rapoport et al. 1983), and the relaxation is not
dependent on a intact vascular endothelium. Our data
demonstrated no significant difference between the ath-
letes and controls in response to SNP either in the static
or in dynamic data, indicating no difference in the
dilator capacity or vascularity between the groups. The
data also indicated that the higher ACh-induced skin
perfusion among athletes compared with controls, was
not due to alterations in vascular smooth muscle relax-
ation via the cGMP mechanism, but rather due to in-
creased levels of endothelial factors reaching vascular
smooth muscle cells. This is in agreement with data from
animals (Delp et al. 1993) and humans (Kingwell et al.
1996). An in vitro study of human subcutaneous resis-
tance vessels suggested that both NO and prostaglandins
are involved in ACh-induced relaxation (Richards et al.
1990). However, Morris and Shore (1996) concluded
that mechanisms other than prostaglandins and sensory
nerve activation may be involved in skin perfusion fol-
lowing iontophoresis with ACh. Kreidstein et al. (1992)
who studied endothelium-dependent and endothelium-
independent vasodilatation in skin flaps, proposed that
ACh-induced vasodilatation is mediated by NO, since
the response was reduced when an inhibitor of NO
synthesis was administered. To what extent other sub-
stances, such as endothelium-derived hyperpolarisation
factor, contribute to ACh-induced vasodilatation re-
mains to be elucidated. The present results simply show
that an endothelium-dependent vasodilator increases the
cutaneous blood perfusion to a higher level among
athletes compared with controls. However, the mecha-
nisms for ACh-induced increase in perfusion are not
determined, but may occur at any stage between the
action of ACh on its receptors and the release of NO.

Other oscillators of the cutaneous blood perfusion

The LDF data we obtained during unstimulated condi-
tion demonstrated a higher absolute, but lower relative
amplitude of the oscillations with a peak at around
0.04 Hz in athletes than in controls, whereas no differ-
ence was observed during iontophoresis with ACh and
SNP. Oscillations at around 0.04 Hz disappear in hu-
mans after denervation, after local and ganglionic nerve
blockade and after sympathectomy (Kastrup et al.
1989). Thus, our results suggest a higher total neuro-
genic contribution to the unstimulated blood flow in
athletes than in the controls. Our results also suggest
that the neurogenic component contributes relatively
less to the blood flow than the other regulators of the

Fig. 6 The average (a) and relative (b) amplitude for all five
frequency intervals in the frequency spectrum from 0.009 to 1.6 Hz
of the laser Doppler perfusion signal in controls (open symbols) and
athletes (filled symbols) during iontophoresis with SNP recorded in
arbitrary units (AU). The five horizontal lines on the box show the
10, 25, 50, 75 and 90th percentiles. The values above or below the
10th and 90th percentiles are represented as data points. P values
are given on the figure
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cutaneous blood flow in athletes than in controls, which
may be explained by the relatively higher contribution of
the heart beat oscillation (1 Hz) in the athletes.

The present study also demonstrated lower relative
amplitudes of the oscillations with a peak amplitude at
around 0.1 Hz among athletes than in controls under
unstimulated condition. Oscillations at around 0.1 Hz
are suggested to reflect the intrinsic myogenic activity of
smooth muscle cells in resistance vessels (Salerud et al.
1983; Meyer et al. 1988; Intaglietta 1989, Kastrup et al.
1989; Hoffmann et al. 1990; Bollinger et al. 1991; Stef-
anovska 1992). Thus, these results may suggest that
athletes have decreased vasomotion induced by the
intrinsic activity of vascular smooth muscle cells than
controls.

Periodic oscillations at around 0.3 Hz are synchro-
nous with respiration (Stefanovska 1992; Bollinger et al.
1993; Mück-Weymann et al. 1996; Stefanovska and
Kroselj 1997), and can be explained by a coupling
between the respiratory and circulatory system mediated
by the autonomic nervous system and by respiratory-
dependent, left cardiac preload alterations (Schmid-
Schönbein et al. 1992). The lower relative amplitude of
the oscillations at around 0.3 Hz among athletes, of
both cutaneous blood perfusion signals obtained during
the unstimulated condition and during iontophoresis
with ACh, indicate a lower contribution of the respira-
tory-dependent oscillations to the blood perfusion in
athletes than in controls.

Finally, athletes had higher absolute and relative
amplitudes of the oscillations at around 1 Hz both
during unstimulated perfusion and during iontophoresis
with ACh. Since these oscillatory changes are thought to
reflect the pulsatile flow of the cardiac cycle (Stef-
anovska 1992; Bollinger et al. 1993; Mück-Weymann
et al. 1996; Stefanovska and Kroselj 1997), the higher
absolute amplitude of these oscillations in the trained
subjects may reflect an increased stroke volume.

Conclusion

The present study demonstrated that the endothelium-
dependent vasodilator ACh selectively enhances the
amplitude of oscillations at around 0.01 Hz in the
cutaneous LDF signal to a greater extent in athletes than
in less trained subjects. The study also demonstrated
enhanced amplitude of the oscillations at around
0.01 Hz in the unstimulated cutaneous LDF signal in
athletes. Oscillation at around 0.01 Hz is considered to
be modulated by the vascular endothelium. Therefore,
the present results indicate that endothelium-mediated
vasodilatation is manifested in the steady value of the
LDF perfusion and also as an oscillatory activity.
Importantly, our results suggest that the oscillatory
activity of the endothelium may be evaluated by spectral
analysis, and that this can provide complementary
information about the mechanisms of microvascular
regulation.
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Janez Jamšek,1,2,3,* Aneta Stefanovska,1,3,† Peter V. E. McClintock,3,‡ and Igor A. Khovanov3,4,§

1Group of Nonlinear Dynamics and Synergetics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25,
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Bispectral analysis, a technique based on high-order statistics, is extended to encompass time dependence for
the case of coupled nonlinear oscillators. It is applicable to univariate as well as to multivariate data obtained,
respectively, from one or more of the oscillators. It is demonstrated for a generic model of interacting systems
whose basic units are the Poincaré oscillators. Their frequency and phase relationships are explored for
different coupling strengths, both with and without Gaussian noise. The distinctions between additive linear or
quadratic, and parametric ~frequency modulated!, interactions in the presence of noise are illustrated.
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I. INTRODUCTION

Most real systems are nonlinear and complex. In general,
they may be regarded as a set of interacting subsystems;
given their nonlinearity, the interactions can be expected to
be nonlinear too.

The phase relationships between a pair of interacting os-
cillators can be obtained from bivariate data ~i.e., where the
coordinate of each oscillator can be measured separately! by
use of the methods recently developed for analysis of syn-
chronization, or generalized synchronization, between cha-
otic and/or noisy systems. Not only can the interactions be
detected @1#, but their strength and direction can also be de-
termined @2#. The next logical step in studying the interac-
tions among coupled oscillators must be to determine the
nature of the couplings: the methods developed for synchro-
nization analysis are not capable of answering this question.

Studies of higher-order spectra, or polyspectra, offer a
promising way forward. The approach is applicable to inter-
acting systems quite generally, regardless of whether or not
they are mutually synchronized. Following the pioneering
work of Brillinger and Rosenblatt @3#, increasing applica-
tions of polyspectra in a diversity of fields have appeared,
e.g., telecommunications, radar, sonar, speech, biomedical,
geophysics, imaging systems, surface gravity waves, acous-
tics, econometrics, seismology, nondestructive testing,
oceanography, plasma physics, and seismology. An extensive
overview can be found in Ref. @4#. The use of the bispectrum
as a means of investigating the presence of second-order
nonlinearity in interacting harmonic oscillators has been of
particular interest during the last few years @5–8#.

Systems are usually taken to be stationary. For real sys-
tems, however, the mutual interaction among subsystems of-

ten results in time variability of their characteristic frequen-
cies. Frequency and phase couplings can occur temporally,
and the strength of coupling between pairs of individual os-
cillators may change with time. In studying such systems,
bispectral analysis for stationary signals, based on time av-
erages, is no longer sufficient. Rather, the time evolution of
the bispectral estimates is needed.

Priestley and Gabr @9# were probably the first to introduce
the time-dependent bispectrum for harmonic oscillators.
Most of the subsequent work has been related to the time-
frequency representation and is based on high-order cumu-
lants @10#. The parametric approach has been used to obtain
approximate expressions for the evolutionary bispectrum
@11#. Further, Perry and Amin have proposed a recursion
method for estimating the time-dependent bispectrum @12#.
Dandawaté and Giannakis have defined estimators for cyclic
and time-varying moments and cumulants of cyclostationary
signals @13#. Schack et al. @14# have recently introduced a
time-varying spectral method for estimating the bispectrum
and bicoherence: the estimates are obtained by filtering in the
frequency domain and then obtaining a complex time-
frequency signal by inverse Fourier transform. They assume,
however, that the interacting oscillators are harmonic.

Millingen et al. @15# introduced the wavelet bicoherence
and were the first to demonstrate the use of bispectra for
studying interactions among nonlinear oscillators. They used
the method to detect periodic and chaotic interactions be-
tween two coupled van der Pol oscillators, but without con-
centrating on time-phase relationships, in particular.

In this paper we develop an approach @16# that introduces
time dependance to the bispectral analysis of univariate data.
We focus on the time-phase relationships between two ~or
more! interacting systems. As we demonstrate below, the
method enables us to detect that two or more subsystems are
interacting with each other, to quantify the strength of the
interaction, and to determine its nature, whether additive lin-
ear or quadratic, or parametric in one of the frequencies. It
yields results that are applicable quite generally to any sys-
tem of coupled nonlinear oscillators. Our principal motiva-
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tion has been to develop a technique for studying the human
cardiovascular system @17#, including the interactions among
its subsystems, and the nature of these interactions. Here,
however, we are concerned with basic principles, and in
demonstrating ~testing! the technique on a well-characterized
simple model. Application to the more challenging problem
posed by the cardiovascular system, currently in progress,
will be described in a subsequent publication.

II. METHOD

A. Bispectral analysis

Bispectral analysis belongs to a group of techniques based
on high-order statistics ~HOS! that may be used to analyze
non-Gaussian signals, to obtain phase information, to sup-
press Gaussian noise of unknown spectral form, and to detect
and characterize signal nonlinearities @5#. In what follows we
extend bispectral analysis to extract useful features from
nonstationary data, and we demonstrate the modified tech-
nique by application to test signals generated from coupled
oscillators.

The bispectrum involves third-order statistics. Spectral es-
timation is based on the conventional Fourier type direct
approach, through computation of the third-order moments
which, in the case of third-order statistics, are equivalent to
third-order cumulants @5,18–21#.

The classical bispectrum estimate is obtained as an aver-
age of estimated third-order moments ~cumulants! M̂ 3

i (k ,l),

B̂~k ,l !5

1

K (
i51

K

M̂ 3
i ~k ,l !, ~1!

where the third-order moment estimate M̂ 3
i (k ,l) is performed

by a triple product of discrete Fourier transforms ~DFTs! at
discrete frequencies k, l, and k1l:

M̂ 3
i ~k ,l !5X i~k !X i~ l !X i*~k1l !, ~2!

with i51, . . . ,K segments into which the signal is divided
to try to obtain statistical stability of the estimates, see the
Appendix.

Just as the discrete power spectrum has a point of sym-
metry at the folding frequency f s/2, the discrete bispectrum
has many symmetries in the (k ,l) plane @22#. Because of
these, it is necessary to calculate the bispectrum only in the
nonredundant region, or principal domain, as shown in Fig.
1. The principal domain can be divided into two triangular
regions in which the discrete bispectrum has different prop-
erties: the inner triangle ~IT! and the outer one @23#. In the
current work it is the IT that is of primary interest. Thus, it is
sufficient to calculate the bispectrum over the IT of the prin-
cipal domain defined in Refs. @5,7#: 0<l<k , k1l< f s/2.

The bispectrum B(k ,l) is a complex quantity, defined by
magnitude A and phase f ,

B~k ,l !5uB~k ,l !ue j/B(k ,l)
5Ae jf. ~3!

Consequently, for each (k ,l), its value can be represented as
a point in a complex space, Re@B(k ,l)# versus Im@B(k ,l)# ,

thus defining a vector. Its magnitude ~length! is known as the
biamplitude. The phase, which for the bispectrum is called
the biphase, is determined by the angle between the vector
and the positive real axis.

The bispectrum quantifies the relationships among the un-
derlying oscillatory components of the observed signals.
Specifically, bispectral analysis examines the relationships
between the oscillations at two basic frequencies, k and l, and
a harmonic component at the frequency k1l . This set of
three frequencies is known as a triplet (k ,l ,k1l). The
bispectrum B(k ,l), a quantity incorporating both phase and
power information, can be calculated for each triplet.

A high bispectrum value at bifrequency (k ,l) indicates
that there is at least frequency coupling within the triplet of
frequencies k, l, and k6l . Strong coupling implies that the
oscillatory components at k and l may have a common gen-
erator. Such components may synthesize a new component at
the combinatorial frequency k6l if a quadratic nonlinearity
is present.

B. Time-phase bispectral analysis

The classical bispectral method is adequate for studying
stationary signals whose frequency content is preserved over
time. We now wish to encompass time dependance within
the bispectral analysis. In analogy with the short-time Fou-
rier transform, we accomplish this by moving a time window
w(n) of length M across the signal x(n), calculating the
DFT at each window position

X~k ,n !>
1

M (
n50

M21

x~n !w~n2t !e2 j2pnk/M . ~4!

Here, k is the discrete frequency, n the discrete time, and t
the time shift. The choice of window length M is a compro-
mise between achieving optimal frequency resolution and
optimal detection of the time variability. The instantaneous
biphase is then calculated: from Eqs. ~2! and ~3!, it is

f~k ,l ,n !5fk~n !1f l~n !2fk1l~n !. ~5!

FIG. 1. The principal domain of the discrete bispectrum of a
band-limited signal can be divided into two triangular regions, the
inner triangle ~IT! and the outer triangle ~OT!. k and l are discrete
frequencies, f S is the sampling frequency.

JAMŠEK et al. PHYSICAL REVIEW E 68, 016201 ~2003!

016201-2



If the two frequency components k and l are frequency and
phase coupled, fk1l5fk1f l , it holds that the biphase is 0
(2p) radians. For our purposes the phase coupling is less
strict because dependent frequency components can be phase
delayed. We consider phase coupling to exist if the biphase is
constant ~but not necessarily50 radians! for at least several
periods of the lowest frequency component. Simultaneously,
we observe the instantaneous biamplitude from which it is
possible to infer the relative strength of the interaction. We
thus hope to be able to observe the presence and persistence
of coupling among the oscillators.

III. ANALYSIS

To illustrate the essence of the method, and to test it, we
use a generic model of interacting systems whose basic unit
is the Poincaré oscillator:

ẋ i52x iq i2v iy i1gx i
,

ẏ i52y iq i1v ix i1gy i
, ~6!

q i5a i~Ax i
2
1y i

2
2a i!.

Here x and y are vectors of the oscillator state variables, a i ,
a i and v i are constants, and gy(y) and gx(x) are coupling
vectors. The activity of each subsystem is described by the
two state variables x i and y i , where i51, . . . ,N denotes the
subsystem.

The form of the coupling terms can be adjusted to study
different kinds of interaction among the subsystems, e.g.,
additive linear or quadratic, or parametric frequency modu-
lation. Examples will be considered both without and with a
zero-mean white Gaussian noise to obtain more realistic con-
ditions.

Different cases of interaction are demonstrated for signals
generated by the proposed model. In each case we analyze
the x1 variable of the first oscillator, recorded as a continuous
time series. For the first 400 s, the interoscillator coupling
strength was zero. It was then raised to a small constant
value. After a further 400 s, it was increased again. The first
15 s and corresponding power spectrum for each coupling
strength are shown in the figures for each test signal, in order
to demonstrate the changes in spectral content and behavior
caused by the coupling. For bispectral analysis the whole
signal is analyzed as a single entity, but the transients caused
by the changes in coupling strength are removed prior to
processing. First the classical bispectrum is estimated. Bifre-
quencies where peaks provide evidence of possible fre-
quency interactions are then further studied by the calcula-
tion of the biphase and biamplitude as functions of time.
They were calculated using a window of length 100 s, moved
across the signal in 0.3 s steps.

A. Linear couplings

Let us start with the simplest case of a linear interaction
between coupled oscillators. We suppose model ~6! to consist
of only two oscillators, i51,2. The parameters of the model
are set to a151, a150.5 and a2 ,a251. The coupling term
is unidirectional and linear

gx1
5h2x2 , gy1

5h2y2 . ~7!

The test signal x1A(t) is the variable x1 of the first oscillator.
It is presented in Fig. 2~a! with the corresponding power
spectrum for three different coupling strengths: no coupling
h250 and weak couplings h250.1,0.2. The peaks labeled
as f 151.1 Hz and f 250.24 Hz are the independent har-
monic components of the first and the second oscillator.
These frequencies are deliberately chosen to approximately
have a noninteger ratio. There is also at least one peak

FIG. 2. Results in the absence of noise. ~a! The test signal x1A(t), variable x1 of the first oscillator with characteristic frequency f 1

51.1 Hz. The characteristic frequency of the second oscillator is f 250.24 Hz. The oscillators are unidirectionally and linearly coupled with
three different coupling strengths: h250.0 ~1!, 0.1 ~2!, and 0.2 ~3!. Each coupling lasts for 400 s at sampling frequency f s510 Hz. Only the
first 15 s are shown in each case. ~b! The power spectrum and ~c! synchrogram. ~d! The bispectrum uBu, using K533 segments, 66%
overlapping, and the Blackman window to reduce leakage and ~e! its contour view.
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present at the harmonically related position f 352 f 12 f 2 at-
tributable to interaction between the two oscillators. It arises
from the nonlinearity of the first oscillator, but is caused by
the forcing of the second oscillator.

The principal domain of the bispectrum for the test signal
x1A , Fig. 2~d!, shows one peak at the bifrequency ~1.1 Hz,
1.1 Hz!, the so-called self-coupling. No other peaks are
present. Bispectral analysis examines the relationships be-
tween oscillations at the two basic frequencies f 1 and f 2 ,
and a modulation component at the frequency f 16 f 2, which
is absent from the power spectra in Fig. 2~b!. Therefore, no
peak is present at bifrequency ~1.1 Hz,0.24 Hz!. Thus, the
method as it stands is incapable of detecting the presence of
linear coupling between the oscillators by analysis of the test
signal x1A . Nonetheless, we still suggest the use of bispec-
tral analysis to investigate the presence of nonlinearity, but
based on an adapted way of calculating the bispectrum.

In general, the bispectral method can be used to examine
phase and frequency relationships at arbitrary time. It is thus
well suited for detecting the presence of quadratic couplings
and frequency modulation, since they both give rise to fre-
quency components at the sum and difference of the inter-
acting frequency components.

To be able to detect linear couplings using the bispectral
method, as proposed, it is necessary to change the frequency
relation. Study of coupled Poincaré oscillators demonstrate
the presence of a component at frequency 2k2l as a conse-
quence of nonlinearity. This component was detected nu-
merically, and is not necessarily characteristic of all nonlin-
ear oscillators. By modifying the bispectral definition to

Ba~k ,l !5E@X~k !X~ l !X*~2k2l !# , ~8!

the biphase turns into

fa~k ,l !5fk1f l2f2k2l2fc , ~9!

where index a is introduced and will be used in what follows
to indicate that the values are obtained using the adapted
method. To obtain 0 radians in the case of phase coupling we
have to correct the adapted biphase expression ~9! by sub-
tracting fc52f l2fk . In the presence of a harmonically
related frequency component and phase coupling, the bi-
phase will then be 0 radians.

The adapted bispectrum uBau for the signal x1A exhibits
several peaks, as shown in Fig. 3~a!. It peaks where f 1

5f2; a triple product ( f 1 , f 2 , f 3) of power at frequencies f 1

5 f 25 f , and also f 352 f 12 f 25 f , raises a high peak at the
bifrequency ( f , f ). The self-coupling peak is physically
meaningless, and it is therefore cut from the adapted bispec-
trum. It can be used for additional checking, since it strongly
implies nonlinearity @6#.

The peak of primary interest is at bifrequency ~1.1 Hz,
0.24 Hz!. There is also a high peak positioned at bifrequency
~0.67 Hz,0.24 Hz! lying on the line where the third frequency
in the triplet is equal to the frequency of the first oscillator
and is therefore a consequence of the method. The small
peaks present in the adapted bispectrum are the result of
numerical rounding error and leakage effects due to the DFT
calculation.

The peak ~1.1 Hz,0.24 Hz! indicates that oscillations at
those pairs of frequencies are at least linearly frequency
coupled. Frequency coupling alone is sufficient for a peak in
the bispectrum to occur. Although the situation can in prin-
ciple arise by coincidence, frequency and phase coupling to-
gether strongly imply the existence of nonlinearities. To be
able to distinguish between different possible couplings, we
calculate the adapted biphase Fig. 3~c!.

During the first 400 s of test signal x1A , where no cou-
pling is present, the adapted biphase changes continuously
between 0 and 2p radians. For the same time of observation
it can be seen that the adapted biamplitude is 0, Fig. 3~d!.
During the second and third 400 s of the signal x1A , a con-
stant adapted biphase can be observed indicating the pres-

FIG. 3. ~a! Adapted bispectrum uBau, calculated from the test signal x1A using K534 segments, 80% overlapping, and the Blackman
window and ~b! its contour view. Regions of the adapted bispectrum above f 2.0.88 Hz and below f 1,0.3 Hz are cut, because the triplets
~1.1 Hz,1.1 Hz,1.1 Hz! and ~0.24 Hz,0.24 Hz,0.24 Hz! produce high peaks that are physically meaningless. ~c! Adapted biphase fa and ~d!

biamplitude Aa for bifrequency ~1.1 Hz,0.24 Hz!, using a 0.3-s time step and a 100-s-long Blackman window for estimating the DFT.
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ence of linear coupling. The value of the adapted biamplitude
is higher in the case of stronger coupling. The coupling con-
stant h2 can be obtained by normalization, and we are thus
able to define the relative strengths of different couplings.

When the oscillators are coupled bidirectionally the fre-
quency content of each of them changes and components 2 f 1
and 2 f 2 are generated. Both of these characteristic frequen-
cies can be observed in the time series of each oscillator.
Two combinatorial components are also present in their spec-
tra, 2 f 12 f 2 and f 122 f 2, assuming that f 1. f 2. In analyz-
ing bidirectional coupling, the procedure described above
can be extended and two combinatorial components should
be analyzed in the same way.

Making use of the calculated instantaneous phases of both
oscillatory components we also construct a synchrogram
@Fig. 2~c!#, as proposed by Schäfer et al. ~see Ref. @1# and the
references therein!, and can immediately establish whether or
not the coupling also results in synchronization.

The instantaneous phases can also be used to calculate the
direction and strength of coupling, using the methods re-
cently introduced by Schreiber, Rosenblum et al., and Paluš
et al. @2#.

B. Linear couplings in the presence of noise

We now test the method for the case where noise is added
to the variable x1 of the first oscillator:

ẋ152x1q12v1y11gx1
1j~ t !,

~10!

ẏ152y1q11v1x11gy1
.

Here j(t) is zero-mean white Gaussian noise, ^j(t)&50,
^j(t),j(0)&5Dd(t), and D50.08 is the noise intensity. In
this way we obtain a test signal x1B(t), Fig. 4~a!.

FIG. 4. Results in the presence of additive Gaussian noise. ~a! Test signal x1B , variable x1 of the first oscillator with characteristic
frequency f 151.1 Hz. The characteristic frequency of the second oscillator is f 250.24 Hz. The oscillators are unidirectionally and linearly
coupled with three different coupling strengths; h250.0 ~1!, 0.1 ~2!, and 0.2 ~3!. Each coupling lasts for 400 s at a sampling frequency
f s510 Hz. Only first 15 s are shown in each case. ~b! Its power spectrum and ~c! synchrogram. ~d! Adapted bispectrum uBau using K
533 segments, 66% overlapping, and the Blackman window and ~e! its contour view. The parts of the uBau above f 2.0.79 Hz and below
f 1,0.3 Hz are omitted because the triplets ~1.1 Hz,1.1 Hz,1.1 Hz! and ~0.24 Hz,0.24 Hz,0.24 Hz! produce a high peak that is physically
meaningless. ~f! Adapted biphase fa and ~g! adapted biamplitude Aa for bifrequency ~1.1 Hz,0.24 Hz!, using a 0.3-s time step and a
100-s-long window for estimating the DFT using the Blackman window.
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For nonzero coupling strength h2, the component at fre-
quency position f 3 can still be seen in the power spectrum,
despite the noise, Fig. 4~b!. The adapted biphase @Fig. 4~f!#
can clearly distinguish between the presence and absence of
coupling. When coupling is weaker, the adapted biamplitude
@Fig. 3~g!# is lower and the adapted biphase is less constant.

The bispectrum for the signal x1B , shown in Fig. 5~a!,
differs from that in the case of zero noise, Fig. 2~d!. Noise
raises two additional peaks positioned at ~1.1 Hz,0.24 Hz!
and ~0.86 Hz,0.24 Hz!. The former could be the result of
interaction; the latter is due to the method: the sum of the
frequencies in this bifrequency pair gives the frequency of
the first oscillator.

Close inspection of the ~0.24 Hz,1.1 Hz! peak by calcula-
tion of the biphase gives Fig. 5~c!. When coupling is present,
the characteristic frequency of the second oscillator appears
in the power spectrum @Fig. 4~b!#. Two frequencies of high
amplitude result in a small peak even if no harmonics are
present at the sum and/or difference frequencies. The second

peak is not of interest to us. It can easily be checked whether
a phase coupling exists among the bifrequencies from the
time evolution of the biphase.

In general, besides estimating bispectral values, one can
also observe the time dependences of the phase and ampli-
tude for each frequency component and their phase relation-
ships. This applies particularly to frequencies that form a
bifrequency giving a high peak in the bispectrum or adapted
bispectrum. Synchrograms, Figs. 2~c! and 4~c!, are obtained
by first calculating the instantaneous phase of each oscillator
and then their phase difference @1#. The phase difference in
this case is between two fixed frequencies. We do not calcu-
late their instantaneous frequencies, although it is possible to
follow the frequency variation by calculating the phase dif-
ference at neighboring bifrequencies around the observed
one and showing them simultaneously on the same plot. Ex-
amples of the phase difference c5f12f2 between the
phases of the first f1 and the second f2 interacting oscilla-
tors are shown in Figs. 5~e! and 5~f!.

FIG. 5. Bispectrum uBu, calculated from the signal x1B presented in Fig. 4~a!, using K533 segments, 66% overlapping, and the
Blackman window to reduce leakage and ~b! its contour view. ~c! Biphase f and ~d! biamplitude A for bifrequency ~1.1 Hz,0.24 Hz!, using
a 0.3-s time step and a 100-s-long window for estimating the DFTs using a Blackman window. ~e! Phase difference c between f1 of the
characteristic frequency component f 1 of the first oscillator and f2 of the characteristic frequency component f 2 of the second oscillator, for
time step 1/f s and ~f! at each period of lowest frequency 1/f 2 in the bifrequency pair ~1.1 Hz,0.24 Hz!, using interpolation and 100-s-long
window for estimating DFTs using the Blackman window.
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C. Quadratic couplings

We now assume that two Poincaré oscillators can interact
with each other nonlinearly. A quadratic nonlinear interaction
generates higher harmonic components in addition to the
characteristic frequencies @5#. In order to study an example
where the first f 151.1 Hz and second f 250.24 Hz oscilla-
tors are quadratically coupled, we change the coupling terms
in model ~6! to quadratic ones

gx1
5h2~x12x2!2, gy1

5h2~y12y2!2. ~11!

Clearly, the test signal x1C presented in Fig. 6~a! for three
different coupling strengths @no coupling h250 ~1! and
weak couplings h250.05 ~2!, h250.1 ~3!# has a richer har-
monic structure. In addition to the characteristic frequencies,
it contains components with frequencies 2 f 1 , 2 f 2 , f 11 f 2,
and f 12 f 2 @Fig. 6~b!#. Equation ~11! also indicates that, as
well as having a particular harmonic structure, the compo-
nents of the signal x1C also have related phases,
2f1 ,2f2 ,f11f2, and f12f2.

We expect several peaks @24# to arise in the bispectrum.
The peak of principal interest is at bifrequency ~1.1 Hz,0.24
Hz!. As before, the self-coupling peaks are at ~1.1 Hz,1.1 Hz!
and ~0.24 Hz,0.24 Hz! are of no interest, so they are cut from
the bispectrum. Additional peaks appear at the bifrequencies
~0.86 Hz,0.24 Hz!, ~0.62 Hz,0.48 Hz!, ~0.86 Hz,0.48 Hz!,
~1.1 Hz,0.48 Hz!, ~1.1 Hz,0.86 Hz!, and ~1.34 Hz,0.86 Hz!.
The triplet of harmonically related frequency components
( f 1 , f 2 , f 3) would peak in the bispectrum when the power for
all these frequencies differs from zero. The components 0.48
Hz,0.86 Hz,1.34 Hz, and 2.2 Hz resulting from quadratic
couplings form such triplets that peak in the bispectrum:
~0.86 Hz,0.24 Hz,1.1 Hz!, ~0.86 Hz,0.48 Hz, 1.34 Hz!, and
~1.34 Hz,0.86 Hz,2.2 Hz!. Besides these, there are also other
peaks, e.g., that at the bifrequency ~0.62 Hz, 0.48 Hz! arising

from the triplet ~0.62 Hz,0.48 Hz,1.1 Hz!; the sum-difference
combination of such frequencies always give the character-
istic frequency, or one that results from quadratic coupling.
The existence of such peaks has no other meaning than as a
strong indicator of second-order nonlinearity. Consequently,
the biphase for all peaks due to possible nonlinear mecha-
nisms in the bispectrum must have the same value, and same
behavior, as shown, e.g., in Figs. 7~a! and 7~c!. The biphase
is constant in the presence of quadratic coupling. From the
biamplitude, the coupling constant can be determined by nor-
malization.

In the power spectrum there is a component at frequency
2 f 12 f 2, even although linear coupling is absent. It arises
from nonlinearity in the Poincaré oscillator. The adapted
bispectrum for the signal x1C shows a peak at bifrequency
~1.1 Hz,0.24 Hz!, but the adapted biphase varies continu-
ously: we may therefore exclude the possibility of linear cou-
pling being present.

D. Quadratic couplings in the presence of noise

As in the case of linear coupling ~Sec. II B! we add a
noise term to the quadratic coupling gx1

and obtain the test

signal x1D , presented in Fig. 8~a!.
Using the bispectral and adapted bispectral methods, we

find that we obtain results very similar to those in the ab-
sence of noise. The method is evidently noise robust. The
results for nonzero coupling are quite different from those
where coupling is absent, Fig. 8~e!.

E. Frequency modulation in the presence of noise

We are also interested of being able to detect parametric
frequency modulation and to distinguish it from quadratic
coupling. Parametric modulation produces frequency compo-
nents at the sum and difference of the characteristic fre-

FIG. 6. Results for quadratic coupling in the absence of noise. ~a! The test signal x1C , variable x1 of the first oscillator with characteristic
frequency f 151.1 Hz. The characteristic frequency of the second oscillator is f 250.24 Hz. Oscillators are unidirectionally and quadratically
coupled with three different coupling strengths: h250.0 ~1!, 0.05 ~2!, and 0.1 ~3!. Each coupling lasts for 400 s at sampling frequency f s

510 Hz. Only the first 15 s are shown in each case. ~b! The power spectrum. ~c! The bispectrum uBu, using K533 segments, 66%
overlapping, and the Blackman window to reduce leakage and ~d! its contour view. The part of the bispectrum above f 2.1.0 Hz is cut,
because triplet ~1.1 Hz,1.1 Hz,1.1 Hz! produces a high peak that is not physically significant.
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quency and the modulation frequency, i.e., the same two fre-
quency components that can also result from quadratic
coupling. Let us now consider an example where the first
oscillator f 151.1 Hz is frequency modulated by the second
one f 250.24 Hz. For this purpose the equations of the first
oscillator become

ẋ152x1q12y1~v11hmx2!1j~ t !,
~12!

ẏ152y1q11x1~v11hmy2!.

The model parameters a1,2 , a1,2 and the noise intensity D
are chosen to be the same as in the previous examples.

We thus obtain a test signal x1E . It is the time evolution
of the variable x1 of the first oscillator, presented in Fig. 9~a!
with the corresponding power spectrum 9~b! for three differ-
ent parametric frequency modulation strengths: no modula-
tion hm50; and modulation hm50.1,0.2. The bispectrum of
the test signal x1E , Fig. 9~c!, exhibits several high peaks.
The highest are at bifrequencies ~1.1 Hz,0.86 Hz!, ~0.86 Hz,
0.24 Hz!, and ~1.1 Hz,0.24 Hz!, in addition to the ~1.1 Hz,
1.1 Hz! peak. They also appear in the case of quadratic cou-
pling. In general, however, the other peaks that appear for
quadratic coupling are absent. The reason is that although the
component of the second oscillator f 2 ~one component of the
triplet! is not present in the power spectrum, its value is not
not exactly zero.

Observing the biphase, no epochs of constant biphase can
be observed, although for strong frequency modulation the
biphase is less variable. In the power spectrum, Fig. 9~b!, no
component rises above the noise level at frequency f 2, of the
bifrequency pair, where the bispectrum peaks. This is an in-
dication that there is parametric coupling between the oscil-
lators, as there is a high value of biamplitude. The biphase
changes runs between 0 and 2p , and is modulated in the
absence of noise. There are also no rapid 2p phase slips of
the kind that are normal if no modulation is present. In the

absence of couplings and modulation, but in the presence of
noise, there would be no such peaks in the power spectrum
or bispectrum.

IV. SUMMARY AND CONCLUSIONS

We have extended the bispectral method to encompass
time dependence and have demonstrated the potential of the
extended technique to determine the type of coupling among
interacting nonlinear oscillators. Time-phase couplings can
be observed by calculating the bispectrum and adapted
bispectrum and by obtaining the time-dependent biphase and
biamplitude. The method has the advantage that it allows an
arbitrary number of interacting oscillatory processes to be
studied.

Recently introduced methods for synchronization analysis
among chaotic and noisy oscillations ~see Ref. @1# and refer-
ences therein! have stimulated applications to a variety of
different systems. Methods for quantifying the strength and
identifying the direction of couplings, based on nonlinear
dynamic or information theory approaches, have recently
been proposed @2#. Here we have addressed the question of
the type of coupling that may result in synchronization, and
we have proposed a method for its analysis. It is applicable
to both univariate data ~a single signal from the coupled
system! or multivariate data ~a separate signal from each
oscillator!.

Millingen et al. @15# have analyzed multivariate data us-
ing a combined wavelet and bispectral method, and have
discussed its application in the field of chaos analysis. Here
we have concentrated on univariate data and illustrated the
potential of the time-phase bispectral method for the detec-
tion of higher-order couplings in the presence of noise. The
possibility of using univariate data is of particular impor-
tance when dealing with real signals, as in practice we often
cannot observe and measure the separate subsystems directly,
but only their combination, which is intrinsically difficult.
Most of the methods proposed so far for synchronization
analysis and detection of the direction of couplings are based

FIG. 7. ~a! The biphase f and ~b! biamplitude A for the test signal x1C for bifrequency ~1.1 Hz,0.24 Hz!, using 0.3-s time step and
100-s-long window for estimating DFT using the Blackman window. ~c! Biphase and ~d! biamplitude for the bifrequency ~0.86 Hz,0.24 Hz!,
with a 0.3-s time step and a 100-s-long window for estimating DFT using the Blackman window.
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on bivariate or multivariate data @1,2#. In conjunction with
frequency or time-frequency filtering @27# or mode decom-
position @28# to obtain two or more ‘‘separate’’ signals, these
methods can be used for univariate data as well. Synchroni-
zation can also be detected in univariate data through an
analysis of angles and radii @29# in return time maps @30#.

The time-phase bispectral method proposed in this paper
is not only applicable to the synchronization analysis of
univariate data but also, at the same time, allows one to
determine the nature of the couplings among the interacting
nonlinear oscillators. Its benefits include ~1! the possibility of
observing the whole frequency domain simultaneously; ~2!
detecting that two or more subsystems are interacting with
each other; ~3! quantification of the strength of the interac-
tion; and ~4! determination of whether the coupling is addi-
tive linear or quadratic, or parametric in one of the frequen-

cies. We have shown the method to be suitable for the
analysis of noisy signals.

Although we have shown that the technique works effec-
tively on a well-characterized simple model, there will be
some difficulties to be faced and overcome in applying it to
real problems, e.g., to data from the cardiovascular system.
Understanding the content of the bispectrum and identifica-
tion of the peaks of interest are not always straightforward.
To appreciate which peaks are those to focus on, one has to
be aware of the basic properties of the system and its funda-
mental frequencies. Distinguishing a quadratic interaction
from parametric frequency modulation may be easy when
the coupling ~modulation! is relatively strong, but becomes
more difficult in the case of relatively weak coupling ~modu-
lation!. In the latter case, observing each phase in the triplet
separately can be helpful. Also it is not always an easy task

FIG. 8. Results for quadratic couplings in the presence of additive Gaussian noise. ~a! The test signal x1D , variable x1 of the first
oscillator with characteristic frequency f 151.1 Hz. The characteristic frequency of the second oscillator is f 250.24 Hz. The oscillators are
unidirectionally and quadratically coupled with three different coupling strengths: h250.0 ~1!, 0.05 ~2!, and 0.1 ~3!. Each coupling lasts for
400 s at a sampling frequency f s510 Hz. Only the first 15 s are shown in each case. ~b! The power spectrum. ~c! The bispectrum uBu
calculated with K533 segments, 66% overlapping, and using the Blackman window to reduce leakage and ~d! its contour view. The part of
the bispectrum above f 2.1.0 Hz is cut, because the triplet ~1.1 Hz,1.1 Hz,1.1 Hz! produce a high peak that is physically meaningless. ~e!

The biphase f and ~f! biamplitude A for bifrequency ~1.1 Hz,0.24 Hz!, with a 0.3-s time step and a 100-s-long window for estimating DFTs
using the Blackman window.
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to distinguish between quadratic interaction and parametric
frequency modulation in the cases when both of them occur
simultaneously. Further, where the possible basic frequencies
are relatively close, it will be hard to detect them separately.
This could cause particular problems in the detection of qua-
dratic phase couplings where frequency pairs are close to-
gether. Although it is possible in principle to study an arbi-
trary number of interacting oscillators, it is advisable in
practice to study them in pairs: a knowledge of the basic
frequency of each is necessary.

The time-dependent biphase-biamplitude estimate was es-
timated with a short-time Fourier transform ~STFT!, using a
window of constant length. The optimal window length de-
pends, however, on the frequency being studied. The effec-
tive length of the window used for each frequency can be
varied by applying the wavelet transform, or the selective
Fourier transform. For demonstration purposes above, the
natural frequencies of the oscillators were chosen to lie

within a relatively narrow frequency interval. A STFT was
therefore sufficient for good time and phase ~frequency! lo-
calization. With a broader frequency content, however, the
wavelet transform or selective Fourier transform will need to
be applied.

Higher-order spectral methods can be used to study arbi-
trary interactions among coupled oscillators: of quadratic,
cubic, or even higher order. In this paper we have concen-
trated on the lowest one, using the third-order spectrum or
bispectrum. For higher orders the volume of the calculations
rises substantially, and the method becomes numerically in-
creasingly demanding. At the same time, graphical presenta-
tion and interpretation of the results become increasingly dif-
ficult.
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APPENDIX: VARIANCE OF THE BISPECTRUM
ESTIMATE

In order to interpret bispectral values from a finite length
time series, the statistics of bispectrum estimates must be
known. To achieve statistical stability, the time series is di-
vided into K segments for averaging @25#. When there is a
large number of segments, the estimate gains statistical sta-
bility at the expense of power spectral and bispectral resolu-
tion. For a real signal, with a finite number of points, the
compromise between bispectral resolution and statistical sta-
bility may be expected at K around 30. Estimates are subject
to statistical error, such as bias and variance. An estimate
must be consistent, that is the statistical error must approach
zero in the mean-square sense as the number of realizations
becomes infinite. Here we neglect the effects of finite time
series length, we assume that they are sufficiently long. Let
us consider the bias and the variance of the bispectrum esti-
mate B̂(k ,l). The expected value of B̂(k ,l) will be

E@ B̂~k ,l !#5

1

K (
i51

K

E@X i~k !X i~ l !X i*~ l ,k !#

5E@X~k !X~ l !X*~ l ,k !#5B~k ,l !, ~A1!

as K becomes infinite, X i is the DFT of the ith segment.
Thus, B̂(k ,l) can be taken as an unbiased estimate @29#. Its
variance will be

var~ B̂ !5E@ B̂B̂*#2E@ B̂#E@ B̂*#

5

1

K
$E@ uX~k !u2uX~ l !u2uX~k1l !u2#2EuB~k ,l !u2%.

~A2!

Note that the variance is inversely proportional to K. From a
mathematical statistics point of view, it is a nontrivial task to
compute the quantity in the bracket in terms of low order
spectra, but one may write a good approximation @26#,

E@ uX~k !u2uX~ l !u2uX~k1l !u2#5P~k !P~ l !P~k1l !,
~A3!

in which case the variance will be

var~ B̂ !5E@ uB̂~k ,l !u2#2E@ B̂~k ,l !#2

'
1

K
P~k !P~ l !P~k1l !@12b2~k ,l !# . ~A4!

Note that it is a consistent estimate in the sense that the
variance approaches zero as K becomes infinite. The vari-
ance is proportional to the product of the powers †P(k)
5E@X(k)X*(k)#‡ at the frequencies k, l, and k1l . Conse-
quently, a larger statistical variability is introduced in esti-
mating larger values in the bispectrum. Finally, the variance
is proportional to @12b2(k ,l)# , where the bicoherence b

2
is

a normalized bispectrum, b2(k ,l)5E@ B̂(k ,l)#2/
@P(k)P(l)P(k1l)# . That is, when the oscillations at k, l,
and k1l are nonlinearly coupled (b2'1), the variance ap-
proaches zero, and when the components are statistically in-
dependent (b2'0), the variance is proportional to the power
at each spectral component @26#.

Brillinger and Rosenblatt @3# have investigated the
asymptotic mean and variance of Fourier-type estimates of
high-order spectra and proved that under certain assumptions
the kth order spectral estimate is asymptotically unbiased
and Gaussianly distributed and that estimates of different or-
der are asymptotically independent. The variances of the real
and imaginary parts of the bispectrum are asymptotically
~i.e., for large K) Gaussian and are equal, var$Re@ B̂(k ,l)#%

>var$Im@ B̂(k ,l)#%. For a perfect phase-coupled triplet, the
variances of the real and imaginary parts are equal to zero. In
the case of no coupling, there is an identical contribution to
the variances from the real and imaginary parts of the esti-
mate of the bispectrum.

The total variance is a sum of individual (i51, . . . ,K)
contributions, because different triplets are mutually statisti-
cally uncorrelated in the absence of phase coupling. Partial
coupling can be expected to result in a combination of per-
fectly phase-coupled oscillations and oscillations with ran-
domly changing phases.
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A directionality index based on conditional mutual information is proposed for application to the instanta-
neous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from bidirectional cou-
pling, as well as to reveal and quantify asymmetry in bidirectional coupling, are demonstrated using numerical
examples of quasiperiodic, chaotic, and noisy oscillators, as well as real human cardiorespiratory data.
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Cooperative behavior of coupled complex systems has re-
cently attracted considerable interest from theoreticians as
well as experimentalists~see, e.g., the monograph@1#!, since
synchronization and related phenomena have been observed
not only in physical, but also in many biological systems.
Examples include the cardiorespiratory interaction@2,3# and
the synchronization of neural signals@4–9#. In such physi-
ological systems it is important not only to detect synchro-
nized states, but also to identify causal~driver-response! re-
lationships between the systems studied. The problem of
coupling direction in generalized synchronization@10# has
been treated using amplitudes of the system observables and
evaluating their mutual predictability@4,5# or mutual nearest
neighbors in reconstructed state spaces@7,11#. Information-
theoretic approaches@8,9,12# have also been successfully ap-
plied.

Considering weakly coupled oscillators the coupling
properties of the systems studied can be inferred from an
analysis of the interrelations between the instantaneous
phases of the oscillators,f1,2(t). These can be estimated
from ~scalar! observable signals@1,13,14#. Several methods
have been proposed for the detection and quantification of
phase synchronization from the experimental data@1,6,14#.
Rosenblumet al. @15,16# have also introduced methods for
inferring directionality of coupling, based either on the Fou-
rier approximation of phase increments or instantaneous pe-
riods as functions of the phasesf1,2(t), or on mutual pre-
dictability of the instantaneous phasesf1,2(t). Palušet al.
@8# have introduced an information-theoretic framework for
the study of generalized synchronization in experimental
time series based on evaluation of so-called coarse-grained
transinformation rates~CTIRs!. In this paper, CTIRs are de-
veloped and applied to instantaneous phasesf1,2(t) of
coupled oscillators.

The method introduced in Ref.@8# operates with
information-theoretic tools, such as the well-known mutual
information I (X;Y) of two random variablesX andY, given
as I (X;Y)5H(X)1H(Y)2H(X,Y), where the entropies
H(X), H(Y), H(X,Y) are given in the usual Shannonian
sense@8,17#. The conditional mutual informationI (X;YuZ)
of the variablesX, Y given the variableZ is defined using the
conditional entropies@8,17# as

I ~X;YuZ!5H~XuZ!1H~YuZ!2H~X,YuZ!. ~1!

Consider two time series$x(t)% and $y(t)% regarded as
realizations of two stationary ergodic stochastic processes
$X(t)% and$Y(t)%, which represent observables of two pos-
sibly coupled systems. Dependence structures between the
two processes~time series! can be studied using the simple
mutual informationI (y;xt), where we usey for y(t) andxt
for x(t1t). I (y;xt) measures the average amount of infor-
mation contained in the process$Y% about the process$X% in
its futuret time units ahead (t future thereafter!. However,
this measure as well as other dependence and predictability
measures could also contain information about thet future
of the process$X% contained in this process itself if the pro-
cesses$X% and $Y% are not independent, i.e., ifI (x;y).0.

For inferring causality relations, i.e., the directionality of
coupling between the processes$X(t)% and$Y(t)%, we need
to estimate the ‘‘net’’ information about thet future of the
process$X% contained in the process$Y% itself by using an
appropriate tool—the conditional mutual information
I (y;xtux). It has been shown@8,9# that usingI (y;xtux) and
I (x;ytuy) the coupling directionality can be inferred from
time series measured in coupled, but not yet fully synchro-
nized systems.

Consider now that the processes$X% and$Y% can be mod-
eled by weakly coupled oscillators and that their interactions
can be inferred by analyzing the dynamics of their instanta-
neous phasesf1(t) and f2(t) @15,16#. The latter can be
estimated from the measured time series$x(t)% and $y(t)%,
e.g., by application of the discrete Hilbert transform
@1,13,14#. Rather than simply substituting the series$x(t)%
and $y(t)% by the phasesf1(t) and f2(t) ~which are con-
fined in interval @0,2p) or @2p,p)), we consider phase
increments

Dtf1,25f1,2~ t1t!2f1,2~ t !,

and the conditional mutual information
I „f1(t);Dtf2uf2(t)… andI „f2(t);Dtf1uf1(t)…, in a shorter
notationI (f1 ;Dtf2uf2) andI (f2 ;Dtf1uf1). Now, in anal-
ogy with Rosenblumet al. @15,16# we define a directionality
index

D~1,2!5
i ~1→2!2 i ~2→1!

i ~1→2!1 i ~2→1!
, ~2!
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where the measurei (1→2) of how system 1 drives system 2
is either equal to the conditional mutual information
I (f1 ;Dtf2uf2) for a chosen time lagt or equal to an aver-
age ofI (f1 ;Dtf2uf2) over a selected range of lagst. ~For
motivation for averaging and the concept of the coarse-
grained information rates see Refs.@8,18#.! And in full anal-
ogy we define i (2→1) using I (f2 ;Dtf1uf1). D(1,2)
should be positive if the driving from system 1 to system 2
prevails, and negative for the opposite case.

In order to test how well directionality index~2! works,
we start with the same simple model of two coupled phase
oscillators as has been used by Rosenblum and Pikovsky
@15# and Rosenblumet al. @16#:

ḟ15v11e1f 1~f1 ,f2!1j1~ t !,

ḟ25v21e2f 2~f2 ,f1!1j2~ t !. ~3!

Using v1,25160.1, q1,250, f 1,25sin(f2,12f1,2) and mu-
tually independent Gaussian IID noises with zero mean and
standard deviations50.2 for j1,2, with a fixed coupling
parametere150.1, we generated time series of the phases
f1,2(t) for 50 different values of the coupling parametere2.
The directionality indicesD(1,2) were obtained from coarse-
grained estimates of the conditional mutual information. The
latter were obtained by a simple box-counting algorithm
based on equiprobable marginal bins~marginal equiquantiza-
tion @18#!. The dependence ofD(1,2) on the quantization

and the series length can be seen in Figs. 1~a, b!, and its
dependence on time lags in Fig. 1~c!.

AveragingI (f1,2;Dtf2,1uf2,1) over a short range of lags
decreases fluctuations of the estimates. For shorter time se-
ries (N51k51024 samples! more coarse (q54) estimates
have higher variance@Fig. 1~b!, dashed line#, while for q
58 the estimates have a higher bias for weaker coupling
@Fig. 1~a!, dashed line#. The results for series lengthsN
58k58192 ~Figs. 1~a, b!, dash-dotted line! and N5128k
51.33105 samples@Figs. 1~a, b!, full line# reflect well the
coupling asymmetry and smoothly changes with changing
coupling parametere2 @cf. the results in Ref.@15#, Fig. 3~a!.#

Let us now consider two coupled Ro¨ssler systems, the
same as studied in Refs.@13,14#, but with different coupling
coefficientse1Þe2:

ẋ1,252v1,2y1,22z1,21e1,2~x2,12x1,2!,

ẏ1,25v1,2x1,210.15y1,2, ~4!

ż1,250.21z1,2~x1,2210!.

The frequenciesv1,2 are defined asv1,25160.015. The
phases of the Ro¨ssler systems~4! have been obtained using
the Hilbert transform by the same way as in Ref.@14#, where
the simple mutual informationI (f1 ;f2) was proposed for
detecting phase synchronization. Here we repeat the numeri-
cal study of transients to phase synchronization, as in Ref.
@14#, but for unidirectional coupling, i.e., eithere150 @Fig.

FIG. 1. ~a!–~c! Directionality indexD(1,2) for noisy phase os-
cillators~3! for e150.1 as a function ofe2 computed usingq58 ~a!
andq54 ~b! equiprobable marginal bins and series lengthN51k
~dashed line!, N58k ~dash-dotted line!, andN5128k samples~full
line!. ~c! D(1,2) for N5128k, q58, averaged over time lags 1–5
~dashed line!, 1–15~full line!, 1–150~dash-dotted line!. The inte-
gration step isp/7. ~d! D(1,2) for coupled Ro¨ssler systems~4! with
e150.01 as a function ofe2 ~dashed line! and with e250.01 as a
function of e1 ~full line!. N5128k, q58, lags 1–15.

FIG. 2. ~a!,~b! Directionality indexD(1,2) ~dashed line! and
mutual informationI (f1 ;f2) ~full line! of the phases of unidirec-
tionally coupled Ro¨ssler systems~4! (e150) as a function ofe2 ~a!,
and fore250 as a function ofe1 ~b!. N5128k, q58, lags 1–15.
~c!,~d! D(1,2) for noisy phase oscillators~3! ~full line! with v1

50.1 andv251.1 ~1:11! for e150.01 as a function ofe2 for lags
1–15~c! and lags 10, 20,. . . , 150~d!. The horizontal dashed lines
are ranges of the mean6 2SD of D(1,2) obtained from the surro-
gate data.
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2~a!#, or e250 @Fig. 2~b!#. We can see thatD(1,2) ~dashed
line! correctly identifies the driver from the response system
@19# before the coupling parameter reaches the synchroniza-
tion threshold@20#. The latter is detected by a steep increase
of I (f1 ;f2) @full line in Figs. 2~a, b!# @14#.

Keeping the coupling parameters before the synchroniza-
tion threshold we can repeat the same study as with the os-
cillators ~3!, when one of the coupling parameters was kept
constant, i.e.,e250.01, and the other,e1, varies from 0 to
0.03 @dashed line, Fig. 1~d!#, and vice versa@full line, Fig.
1~d!#. The directionality of coupling was exactly revealed
also in this example of chaotic systems that were not studied
yet from this point of view.

Let us return to phase oscillators~3!. We have also studied
the noise-free quasiperiodic system, as well as more complex
noisy cases with larger differences in the natural frequencies,
or with asymmetric coupling, as treated in Ref.@16#. In all
cases the directionality indexD(1,2) identified the correct
coupling direction.

Since we intend to study cardiorespiratory interactions
during paced respiration, when the ratio of natural frequen-
cies can be rather large, we have studied systems~3! with
such frequency ratios asv1 :v251:11 @Figs. 2~c, d!#. For
relatively short time lagst the directionality indexD(1,2)
detects the correct coupling directionality for the majority of
the coupling parameter values@Fig. 2~c!, the full line#, while
for long time lags@Fig. 2~d!# the directionality detection abil-
ity of D(1,2) is lost. Looking back at the conditional mutual
information I (f1 ;Dtf2uf2) and I (f2 ;Dtf1uf1), we can
find that their values are very low, comparable with variance
of their estimates. This leads to a large bias and variance of
the directionality indexD(1,2). Therefore, we need to estab-
lish significance ofD(1,2) values by a statistical test.

We use the concept of surrogate data~see Ref.@14# and
references therein!. In this case the surrogate data can be a
set of realizations~with different random initial conditions!
of phases of uncoupled oscillators~3!. Estimating the condi-
tional mutual information and the directionality indices for
these surrogate data sets, we can assess the fluctuations of
these quantities for uncoupled data without any directionality
of coupling. To present these fluctuations, we illustrate the
ranges of the mean62SD ~standard deviations! of D(1,2)
for the surrogates by the dashed lines in Figs. 2~c, d!. In the
case of large time lags@Fig. 2~d!# the surrogates confirm the
extremely large fluctuations ofD(1,2) and its bias to positive
values. As a result, the directionality index of the coupled
oscillators does not differ significantly fromD(1,2) of the
surrogates, so in this case no directionality can be inferred
@Fig. 2~d!#. In the case of small lags, fluctuations and bias of
D(1,2) are much smaller, although not negligible@Fig. 2~c!,
dashed lines#. The range of surrogateD(1,2) fluctuations
disqualifies values ofD(1,2) for the coupled oscillators for a
small interval around the symmetry pointe250.01. Since we
can see that the fluctuations ofD(1,2) estimated for the
coupled systems@full line in Fig. 2~c!# are of similar magni-
tude to the surrogate mean62SD range, comparison of the
directionality index obtained from the studied data with its
surrogate range saves us from making an unreliable inference
of the directionality.

In any experimental application, estimation of the direc-
tionality index should be accompanied by an assessment of
its significance. Otherwise an incorrect directionality could
be concluded due to either variance or bias in the estimate of
the directionality index. The surrogate data test is one pos-
sible approach. In many practical applications, however, it is
the only available one. Various types of bivariate surrogate
data useful in the study of coupled systems are discussed in
Ref. @14#. A special type related to a specific application is
presented below, where we analyze data from human cardio-
respiratory interactions.

The cardiorespiratory coupling during spontaneous and
paced respiration was analyzed in a group of young healthy
subjects. The data were noninvasively recorded for 12 min,
while the subjects were lying comfortably. The cardiac activ-
ity was assessed by recording the electrocardiogram~ECG!
and a piezoelectric sensor was used to measure excursions of
the thorax and hence the respiratory activity. A sampling rate
of 400 Hz was used for both signals.~For details of measure-
ments see Ref.@21#.! The phases of cardiac activity were
estimated using the marked events method, by markingR
peaks. The phases of the respiratory oscillations were ob-
tained by application of the Hilbert transform to the respira-
tory signal. The results will be presented in detail elsewhere;
here we briefly illustrate the potential of the proposed ap-
proach. The directionality indexD(1,2) ~1—respiratory,
2—cardiac system! was estimated in moving 40-s windows
with 50% overlap, using four quantization levels and time
lags from 20 to 200, increased by 20~samples!.

In the same windows, but using 16 quantization levels,
the simple mutual informationI (f1 ;f2) of the instanta-
neous phasesf1(t),f2(t) was calculated in order to assess
presence of phase synchronization@14#. Significance levels

FIG. 3. Synchrogram~top panel!, mutual informationI (f1 ;f2)
~middle panel!, and the directionality indexD(1,2) ~bottom panel!
for the phases of human cardiorespiratory data~respiration and
heartbeat, full thick lines!. The ranges of surrogate mean62SD for
I (f1 ;f2) and D(1,2) are depicted by thin lines in the respective
panels.
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for bothD(1,2) andI (f1 ;f2) were established using sets of
30 realizations of surrogate data. The latter were constructed
by random permutations ofR-R intervals, thus producing
artificial heartbeat data with the same frequency histograms
as the original data. Due to the randomization of theR-peak
positions, however, any possible association with the respi-
ratory rhythm was destroyed. The respiratory data remained
unchanged, so that the significance levels depend on the
character of the respiratory dynamics in each window.

The synchrogram@2#, the mutual informationI (f1 ;f2),
and the directionality indexD(1,2) for an example of spon-
taneous respiration are illustrated in Fig. 3. Two episodes of
phase synchronization between the heartbeat and respiratory
rhythms, visible in the synchrogram as almost horizontal
lines ~at times of approximately 240 and 500 s!, are detected
by I (f1 ;f2) ~thick line in Fig. 3, middle panel! lying out-
side from the surrogate range (mean62SD of the surrogates,
depicted by thin lines!. The necessity of establishing the sig-
nificance level~here as the mean plus two standard devia-
tions of the surrogate set! is obvious—even relatively large
positive values ofI (f1 ;f2) do not necessarily reflect the
presence of synchronization~but the bias and variance of
estimates! unless I (f1 ;f2) is larger than the significance
level given by the surrogate mean and variance.

The same holds also for the values of the directionality
index D(1,2) ~thick line in Fig. 3, bottom panel!, estimates
of which are severely biased towards positive values, as con-

firmed by the surrogate mean62SD ranges~thin lines!.
Nevertheless, in a large part of the recording,D(1,2) is
larger than its significance level, indicating that the respira-
tion is driving the cardiac system, as was recently reported
by Rosenblumet al. @16#. It is also noticeable thatD(1,2)
falls into the surrogate range, i.e., no directionality can be
inferred, in the two synchronous intervals@20#, detected by
I (f1 ;f2) as well as seen in the synchrograms~Fig. 3!.

Note that the tools introduced above have a firm math-
ematical basis in the information theory, and their coarse-
grained estimates can be computed more efficiently@18,22#
than measures used by other authors.

In conclusion, an information-theoretic approach for de-
tecting the directionality of coupling from the phases of in-
teracting oscillators has been proposed and tested. Its ability
to reveal and quantify possible asymmetry in the coupling
has been demonstrated, using both numerical and real data
examples. The problem of assessing the significance of esti-
mated directionality indices is discussed for the first time in
this context and solutions were proposed.
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@18# M. Paluš, Physica D93, 64 ~1996!.
@19# With the exception of the uncoupled case, whenD(1,2) is

biased to negative values.
@20# The impossibility of detecting the directionality of coupling

from data in synchronized states is discussed in Ref.@8# as
well as in Ref.@16#.

@21# A. Stefanovska and M. Bracˇič, Contemp. Phys.40, 31 ~1999!;
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Söderström, Torbjörn, Aneta Stefanovska, Mitja Ve-
ber, and Henry Svensson. Involvement of sympathetic
nerve activity in skin blood flow oscillations in humans. Am
J Physiol Heart Circ Physiol 284: H1638–H1646, 2003;
10.1152/ajpheart.00826.2000.—We have used the wavelet
transform to evaluate the time-frequency content of laser-
Doppler flowmetry (LDF) signals measured simultaneously
on the surfaces of free microvascular flaps deprived of sym-
pathetic nerve activity (SNA), and on adjacent intact skin, in
humans. It was thereby possible to determine the frequency
interval within which SNA manifests itself in peripheral
blood flow oscillations. The frequency interval from 0.0095 to
2 Hz was examined and was divided into five subintervals:
I, �0.01 Hz; II, �0.04 Hz; III, �0.1 Hz; IV, �0.3 Hz; and V,
�1 Hz. The average value of the LDF signal in the time
domain as well as the mean amplitude and total power in the
interval from 0.0095 to 2 Hz and amplitude and power within
each of the five subintervals were significantly lower for
signals measured on the free flap (P � 0.002). The normal-
ized spectral amplitude and power in the free flap were
significantly lower in only two intervals: I, from 0.0095 to
0.021 Hz; and II, from 0.021 to 0.052 Hz (P � 0.05); thus
indicating that SNA is manifested in at least one of these
frequency intervals. Because interval I has recently been
shown to be the result of vascular endothelial activity, we
conclude that we have identified SNA as influencing blood
flow oscillations in normal tissues with repetition times of
20–50 s or frequencies of 0.02–0.05 Hz.

blood flow variability; time-frequency analysis; wavelet
transform; autoregulation; microvascular free flaps

SYMPATHETIC NERVOUS SYSTEM activity provides one of the
fundamental mechanisms for the control of blood flow
and pressure. In contrast to somatic nerve activity,
sympathetic nerves (SN) are continuously active. They
rhythmically discharge so that all innervated blood
vessels are under some degree of continuous contrac-
tion and relaxation. Their control of the blood distribu-
tion to the end cells or organs is exerted in several
frequency bands, including rhythms related to the car-
diac and respiratory cycles. Whereas the rhythmical
discharge of SN at higher frequencies does not appear
directly to induce oscillations in innervated vascula-

ture, slower frequencies appear to be directly respon-
sible for oscillations in the blood flow (30).

However, it is still unclear which frequency band(s)
manifest the effect of sympathetic innervation on the
blood flow oscillation in humans. One of the reasons is
certainly connected with difficulties in obtaining good
low-frequency resolution. Moreover, not one, but sev-
eral oscillatory components were observed in the blood
flow signal spanning from the cardiac frequency (�1
Hz in healthy humans) down to endothelium-related
oscillations with frequencies �0.01 Hz (25, 47). Like
the cardiac frequencies, the others are also noncon-
stant, but rather vary in time. That is why, in studying
various oscillatory components in the blood flow signal,
a method for time-frequency analysis with logarithmic
frequency resolution is required. With the use of Mor-
let’s mother wavelet (17, 34), the wavelet transform
was shown to meet these requirements (8, 46, 47).

In this study, clinical cases of microvascular free
flaps were used to study the role of sympathetic oscil-
lations in the peripheral blood flow. The flaps were
transferred from a suitable donor site to the defected
site. During surgery, the free flap is completely de-
tached from its donor site, and the blood perfusion of
the flap is restored by means of microvascular anasto-
moses. Normally, one supplying artery and one drain-
ing vein were used. Because all SN fibers are cut in this
type of operation, there is no residual sympathetic
control of the blood flow to the flap. The aim of the
present study was to analyze the frequency content of
blood flow signals simultaneously recorded on the free
flap and on the intact skin. Any differences may thus
be taken as an indication of the characteristic fre-
quency of blood flow oscillations where sympathetic
control is manifested.

METHODS

Patients

The investigation was conducted according to the Helsinki
Declaration of 1975 (Revised 1983). Eight patients, all fe-
male, with transferred musculocutaneous flaps were in-
cluded in the study (median age 50.6 yr, range 45–57 yr).
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Measurements

A laser-Doppler flowmeter (model PeriFlux PF-3, Perimed;
Järfälla, Sweden) was used for the measurements of the skin
blood perfusion. The method is noninvasive and allows for
continuous recordings (38). The speed of blood cells moving
within the measured volume is estimated from the frequency
shift between the emitted and scattered light, with some
chosen time constant. A time constant of 0.03 s was selected.
Each blood perfusion signal was sampled at a frequency of 32
Hz and stored in a personal computer. Although the signal
cannot be expressed in other than arbitrary units (AU) (26),
in what follows we will refer to it either as blood perfusion or
blood flow, because our main interest is cantered on its
dynamical properties where only the relative changes are
relevant.

The signals were recorded after free-flap surgery. The
recordings started 2–10 h after reperfusion and continued
overnight at the intensive care unit. Two probes functioning
simultaneously were used. The first probe collected the sig-
nal from the revascularized free flap, whereas the second
probe collected the signal from intact skin in the immediate
vicinity of the free flap.

The exposed part of the flap was a free-flap skin (muscu-
locutaneous flaps). Its size varied from �10�15 cm up to
�20 � 30 cm. The flap probe was placed in the exposed center
of the flap. The comparison probe, which collected signals
from adjacent skin, was placed close to the flap, but out of
range from the operation field to ensure that nondenervated
skin was monitored, thereby avoiding undermined or com-
promised skin, and on scar-free skin supported by intact
subcutaneous tissue. A common distance to the probe was
�10 cm from the wound and the border of the free flap.

The recordings were motivated clinically as well as exper-
imentally. Namely, early detection of any disturbances of the
flap perfusion is of paramount importance because a reop-
eration can usually save the flap if undertaken without delay.
Therefore, the level of blood perfusion was continuously mon-
itored for immediate detection of possible complications. At
the same time, data were stored for later spectral analysis.
However, movement artifacts are unavoidable in recordings
taken over several hours. Consequently, only the segments
without artifacts were extracted from each recording. A time

interval of 20 min was chosen to achieve the weak station-
arity of the signals necessary for calculation of the wavelet
transform. This time interval allows for reliable estimation of
the spectrum in the broad frequency interval where we ex-
pect sympathetic activity to be manifested, namely from
0.0095 to 2.0 Hz. The same time interval was selected for
both signals (Fig. 1) and the spectral characteristics of sig-
nals measured on free flaps were compared with those of
signals measured on intact skin.

Time-Frequency Analysis

Methods of frequency and time-frequency analysis are
based on the theory of Fourier transform (12), a mathemat-
ical tool that connects representation of a signal in time and
frequency domain. However, the Fourier analysis is inappro-
priate for dealing with signals that contain time-variable
frequency content. Moreover, any abrupt change in time is
spread out over the whole observed frequency interval. To
obtain localization in time, a short-time Fourier transform
was proposed (14). By using this method, a window w(u) of
fixed length is shifted along the signal to obtain information
about the time and a standard Fourier transform is per-
formed within this window to extract the current frequency
content. However, when both low and high frequencies with
different time spans are to be detected simultaneously in a
signal, the short-time Fourier transform fails either to follow
the time evolution of quick events or to estimate the fre-
quency content within the low-frequency band. The method
of wavelet analysis offers a solution to this problem. In the
wavelet transform, at a particular time instant, each fre-
quency is estimated for a corresponding window. The win-
dow, �(u), is called the mother wavelet and is scaled (dilated
and constricted) in time, thus allowing for frequency local-
ization. In this way, a family of generally nonorthogonal
basis functions

�s,t � �s� � 1/2��u � t
s � (1)

is obtained, where t is time, s is scale related to the frequency
f as f � f0/s, and f0 determines the current frequency resolu-
tion. By choosing f0 � 1, we obtain the simple relation f � 1/s.

Fig. 1. A typical laser-Doppler flow-
metry signal measured simultaneously
on a free flap (A) and on intact skin (B).
Segments of 60 s are displayed. AU,
arbitrary units.
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The continuous wavelet transform of a signal g(u) is then
defined as

g̃�s, t� � 	

�

��

�� s,t�u�g�u� du (2)

It is a mapping of the function g(u) onto the time-frequency
plane.

By choosing a mother wavelet well concentrated in both
time and frequency, we can precisely detect the frequency
content within a given time interval. Here we are only re-
stricted by the uncertainty principle. Namely, to detect a
frequency, the signal must be observed over at least one
period of this frequency. Hence, we cannot say exactly at
which instant in time the signal had this frequency. The best
time-frequency localization, within the limits given by the
uncertainty principle, can be obtained by using the Morlet
wavelet. It is a Gaussian function modulated by sine wave.
The wavelet transformation of a signal (Fig. 2A) yields a
three-dimensional plot (Fig. 2B), which can then be projected
in two dimensions, averaging over either time (Fig. 2C) or
amplitude (Fig. 2D). Before calculation of the wavelet trans-
form, the average value of each signal was subtracted, nor-
malizing its mean value to zero. The frequency content
�0.0095 Hz, which manifests as a trend, was also removed by
use of a moving average.

Quantitative measures. An oscillatory component in a sig-
nal can be characterized by its instantaneous frequency and
corresponding amplitude or power. To compare many signals,
quantitative measures were introduced (8). The frequency
interval is divided into several intervals (Fig. 3), and the
power and average amplitude within each interval are used
to characterize the spectral components. In the blood flow
signal, five oscillatory components were demonstrated to

exist in the interval between 0.0095 and 2.0 Hz. In resting
subjects, their frequencies are centered at �0.01, 0.04, 0.1,
0.3, and 1 Hz. The outer limits for each characteristic fre-
quency were determined and are presented in Table 1. Time-
averaged wavelet transforms obtained from signals mea-
sured on the free flap and on intact skin are presented in Fig.
3, A and B, respectively. The frequency intervals for each
oscillatory component are indicated.

Power of spectral components. In a given frequency inter-
val, the average power can be determined as

i�fi1, fi2� �
1
tw 	

0

tw

	
1/fi1

1/fi2 1
s2 �g̃�s, t��2 ds dt (3)

where i is the total power with the ith frequency interval and
ds and dt are the derivatives of scale and time, respectively. The
frequencies fi1 and fi2 are the lower and upper bounds of the ith
frequency interval. The power is averaged over the time tw, for
which the wavelet transform was calculated.

To obtain the relative contribution of a particular spectral
component, the normalized power was also introduced

ei�fi1, fi2� �
i�fi1, fi2�

total
(4)

where ei is normalized power within the ith frequency inter-
val and total is the total power of the signal in the entire
frequency range of interest, i.e., between 0.0095 and 2.0 Hz
in our case.

The average amplitude of a spectral component in a given
frequency interval can be determined as

Ai�fi1, fi2� �
1
tw 	

1/fi1

1/fi2 1
s2 g̃�s, t� ds dt (5)

Fig. 2. A: laser-Doppler perfusion sig-
nal in AU. For the calculation of the
wavelet transform (B), the signal is
normalized to zero in the time domain.
The wavelet transform averaged over
time (C) and automatically detected
amplitude peaks projected onto the
time-frequency plane (D).
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The relative amplitude, or normalized amplitude, is then

ai�fi1, fi2� �
Ai�fi1, fi2�

Atotal
(6)

where ai is the normalized average amplitude within the ith
frequency interval and Atotal is the average amplitude ob-
tained over the entire frequency range under observation.

Statistical Analysis

Data are presented either as group medians within the
total range or as box plots. The five horizontal lines at the
boxes are the 10%, 25%, 50%, 75%, and 90%. Values below or
above the 10% and 90% level are presented as data points.
The Mann-Whitney test with two-sided critical values was
applied. Statistically significant differences are defined as
P � 0.05.

RESULTS

Average Values of Blood Flow Signal

For each 20-min signal, an average value was calcu-
lated. Data for both groups of signals, measured simul-
taneously on the flap (n � 8) and on intact skin in the
immediate vicinity (n � 8), are presented as box plots
in Fig. 4A. The median of average values of the blood
perfusion signals from free flaps is 4.3 (1.4–10.6) AU
and 36.9 (6.8–60.3) AU for signals collected from intact

skin, thus demonstrating a significantly lower level of
blood flow in the flaps (P � 0.0003).

Average Spectral Amplitude

The mean values of the average spectral amplitude
in the frequency range from 0.0095 to 2.0 Hz for signals
obtained from free flaps is 0.30 (0.12–0.70) and 4.00
(0.42–6.84) on intact skin. The differences are signifi-
cant (P � 0.0003). Box plots for both groups are pre-
sented in Fig. 4B.

Total Spectral Power

The total power in the entire frequency range, i.e.,
from 0.0095 to 2.0 Hz, was calculated for each signal.
The box plots for groups of signals are presented in Fig.
4C. The mean value for signals obtained on flaps is 0.35
(0.04–1.45), and it is 74.92 (0.54–152.30) for signals
obtained on intact skin. Again, the differences are
significant (P � 0.0003), hence demonstrating that not
only the level of flow but also the power of its oscilla-
tions is lower on free flaps.

Spectral Amplitude Within Each Frequency Interval

Median values and total ranges of spectral ampli-
tude in each frequency interval are summarized in
Table 2.

The amplitude of each oscillatory component is sig-
nificantly smaller for signals measured on free flaps.
To resolve whether the decrease in amplitude in any of
the frequency intervals is relatively more pronounced
we also present normalized amplitudes. Box plots for
both groups of signals are presented in Fig. 5A. The
normalized amplitude is significantly decreased in in-
tervals I and II. The median value of normalized am-
plitude contributed by interval I for signals obtained on
flaps is 1.46 (0.99–2.06) and for signals obtained on
intact skin 3.16 (1.17–6.01), with P � 0.04. The median
value of normalized amplitude within interval II is 1.38
(1.13–2.14) for flaps and 2.54 (1.10–5.18) for intact
skin, with P � 0.05.

Fig. 3. A typical example of time-aver-
aged wavelet transform calculated
from a signal measured on a free flap
(A) and on intact skin (B) simulta-
neously. Frequency intervals I–V are
depicted, where average amplitude
and spectral power are calculated.

Table 1. Frequency intervals used in quantitative
analysis of wavelet transforms of blood flow signals

Subintervals Frequency Intervals, Hz

I 0.0095–0.021
II 0.021–0.052
III 0.052–0.145
IV 0.145–0.6
V 0.6–2

Frequency intervals are given in cycles per second (Hz) used in
quantitative analysis of wavelet transforms of laser-Doppler perfu-
sion (LDP) signals. The wavelet transform was calculated for the
frequency interval of 0.0095–2 Hz, which was then subdivided into
the five subintervals (I–V ) listed. The amplitude and power within
each of the subintervals was then calculated as discussed in the text.
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Spectral Power Within Each Frequency Interval

Median values and the total range of spectral power
in each frequency interval are summarized in Table 3.

The power of each oscillation is significantly smaller
for signals measured on free flaps. Again, to see
whether the spectral power in some of the intervals is
changed more than in others, we also present the
normalized power contributed by each frequency inter-
val to the total power. Box plots for both groups of
signals are presented in Fig. 5B. Here, we see that a
great decrease in spectral power with respect to the
total power occurs for flaps in frequency intervals I
(0.0095–0.021 Hz) and II (0.021–0.052 Hz). The me-
dian value of normalized power contributed by interval
I is 0.012 (0.005–0.025) for flaps and 0.048 (0.006–
0.128) for intact skin, with P � 0.03. The median value
of normalized power within interval II is 0.026 (0.015–
0.058) for flaps and 0.083 (0.015–0.229) for intact skin,
with P � 0.05.

DISCUSSION

We have presented an analysis of blood flow mea-
sured on free flaps and on intact skin within first 24 h
after transplantation. Only flaps with no disturbances
in perfusion were included in the study. Therefore, two
main differences between the intact skin and the free
flap were to be expected: 1) the absence of sympathetic

control of the vessels in the flap, and 2) reduced endo-
thelium-mediated metabolic activity in the flap.

The blood flow level in free flaps was significantly
lower than in intact skin. In addition, the power and
amplitude of oscillations in the frequency range from
0.0095 to 2.0 Hz were dramatically lowered. However,
the most pronounced decreases, as manifested in nor-
malized values of power and amplitude, were observed
in two frequency intervals: interval I, from 0.0095 to
0.021 Hz; and interval II, from 0.021 to 0.052 Hz. These
results imply that the sympathetic and endothelium-

Fig. 4. Box plots obtained from 20-min signals mea-
sured on free flaps and on intact skin simultaneously.
The average blood flow (A) is obtained as a time-aver-
age of each laser-Doppler signal. The average spectral
amplitude (B) is calculated from the time-averaged
wavelet transform in the interval from 0.0095 to 2 Hz.
The total spectral power (C) is calculated for the same
interval. All three values are significantly lower for
signals measured on free flaps. *P � 0.0003.

Fig. 5. A: spectral amplitude within each frequency interval normal-
ized to the average spectral amplitude in the frequency interval from
0.0095 to 2 Hz. B: normalized spectral power is obtained by dividing
the spectral power within each frequency interval by the total power
in the interval from 0.0095 to 2 Hz. Both the normalized amplitude
and normalized power are significantly lower in free flaps in two
frequency intervals: I, from 0.0095 to 0.021 Hz; and II, from 0.021 to
0.052 Hz. *P � 0.05.

Table 2. Mean amplitude in each frequency interval
of five spectral components

Interval Range, Hz Free Flap Intact Skin

I 0.0095–0.021 0.47 (0.12–1.45) 14.00 (1.18–36.28)
II 0.021–0.052 0.45 (0.14–1.50) 10.25 (1.47–30.81)
III 0.052–0.145 0.62 (0.10–1.63) 7.81 (0.80–17.77)
IV 0.145–0.6 0.23 (0.06–0.64) 2.78 (0.33–4.93)
V 0.6–2 0.29 (0.13–0.64) 3.95 (0.39–7.34)

With the use of the wavelet transform, the spectral power is
calculated from two LDP signals measured simultaneously on the
free flap and intact skin. The data are from eight patients, all female,
with transferred musculocutaneous flaps. The numbers in parenthe-
ses refer to the total range. In each frequency interval (I–V ), the
average amplitude is significantly higher in the LDP signal mea-
sured on the intact skin compared with values obtained on the free
flap (P � 0.002 for each interval).
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mediated metabolic activity manifest in either or both
of these two frequency intervals.

Oscillations in Blood Flow

The oscillations recorded in the blood flow reflect
both vasomotion and flow motion. The vasomotion is
usually defined as rhythmic changes in the diameter of
the small blood vessels, produced by contraction and
relaxation of the muscular components in their walls.
The flow motion results from the motion of the blood
cells and their interaction with the vessel walls.

The cardiac frequency (�1 Hz in a resting, healthy
subject) and the respiratory frequency (�0.3 Hz) have
been reported in the peripheral blood flow signal, mea-
sured by laser-Doppler flowmetry (8, 18, 25, 42, 46).
They were also demonstrated in simultaneous mea-
surements of ECG, respiration, and peripheral blood
flow recorded at different sites of human skin (7, 46).
The essential source of the blood flow, also in the
peripheral vessels, is therefore the pressure difference
generated by the heart and lung pumps. For example,
�50% of the normalized spectral power in the blood
flow is contributed by the heart, both in the intact skin
and the free flap (see Fig. 5B). However, there are also
peripheral mechanisms that contribute to the oscilla-
tions observed in the blood flow.

Endothelium-mediated oscillations. The layer of endo-
thelial cells that lines the entire vascular system acts
not only as a passive barrier keeping cells and proteins
from escaping freely into the tissue, but also as a
source of several vasoactive substances. After Furch-
gott and Zawadzki (13) showed that the rabbit aorta
dilates in response to the application of ACh only in the
presence of intact endothelium, several studies were
initiated to identify the vasoactive substances and
their involvement in metabolic, immune, and cytotoxic
activity (33). The application of iontophoretically an
endothelium-dependent (ACh) and an endothelium-in-
dependent (sodium nitroprusside) vasodilator recently
demonstrated that endothelial involvement in blood
flow oscillations is manifested in the frequency interval
from 0.0095 to 0.021 Hz (25, 47).

Oscillations with a period of �1 min are significantly
reduced in flaps. This may be taken as evidence that
the contribution of endothelium-mediated metabolic

activity to the blood flow oscillations of the flap is lower
than to those of the intact skin. This may be on account
of the smaller number of vessels, and hence the smaller
area of endothelium involved in the perfusion, during
the early stage after transplantation. The release of
mediators from ischemic areas in the transplanted
flap, such as oxygen-free radicals or nitric oxide, and
the exposure of other metabolites after ischemia-reper-
fusion injury, may well contribute to decreased endo-
thelial activity.

Sympathetic regulation of peripheral blood flow os-
cillations. Apart from frequency interval I, from 0.0095
to 0.021 Hz, the only significant difference between the
normalized power and amplitude of oscillations in flaps
and in intact skin was observed in the frequency inter-
val II, from 0.021 to 0.052 Hz. Therefore, we may take
the results of the present study as evidence that sym-
pathetic control of the peripheral vasculature is in-
volved in oscillations in this frequency interval.

The results obtained are in agreement with the find-
ings of Kastrup et al. (23) and Golenhofen and Hilde-
brandt (15). With the use of a laser-Doppler flowmeter,
Kastrup et al. (23) have identified rhythmical varia-
tions in the blood flow of the human skin with median
frequencies of 6.8 min
1 (0.11 Hz) and 1.5 min
1 (0.025
Hz). They named these �-oscillations and �-oscilla-
tions, respectively. The �-oscillations correspond to our
interval II, whereas �-oscillations correspond to inter-
val III. They showed that the �-oscillations disap-
peared after local and ganglionic blockade or chroni-
cally sympathectomized tissue. Furthermore, they sug-
gested that �-oscillations are a vascular reaction of
pure neurogenic origin.

By using the wavelet transform, which facilitates
good low-frequency resolution, we have confirmed the
results of Kastrup et al. (23), obtained by observing
periodicities in the time domain. It is difficult, how-
ever, in the time domain to visualize more than two
oscillations. This could be the reason they concentrated
only on those two particular oscillations.

The conclusion that the SN activity (SNA) influences
skin blood flow in the frequency band of 0.02–0.05 Hz
contrasts with the results of the study by Stauss et al.
(43). In their investigations, the SN fibers were electri-
cally stimulated at different frequencies and the re-
sponses in skin blood flow were recorded with the
laser-Doppler method. In that study, sympathetic mod-
ulation of human skin blood flow was found to be most
effective in the frequency range of 0.075–0.1 Hz. How-
ever, in the present study, we have collected signals
from reliably denervated postischemic tissue and made
comparative studies with intact tissue in its physiolog-
ical state in the same individual without stimulation of
any frequency. One possible explanation for the differ-
ences in the results obtained is that, as observed in the
oscillations of the blood flow, the basic activity of the
sympathetic nervous system differs from that induced
by electrical stimulation via major peripheral nerves.
Furthermore, the two studies differ with respect to the
methods used for spectral estimation. We have used
continuous wavelet transform, which allows for loga-

Table 3. Mean power in each frequency interval

Interval Range, Hz Free Flap Intact Skin

I 0.0095–0.021 0.01 (0.00–0.03) 4.71 (0.02–19.51)
II 0.021–0.052 0.02 (0.00–0.08) 6.97 (0.08–34.84)
III 0.052–0.145 0.08 (0.00–0.32) 11.90 (0.08–37.87)
IV 0.145–0.6 0.06 (0.00–0.31) 8.66 (0.07–20.13)
V 0.6–2 0.19 (0.03–0.70) 42.68 (0.28–108.57)

With the use of the wavelet transform, the spectral power is
calculated from two LDP signals measured simultaneously on the
free flap and intact skin. The data are from eight patients, all female,
with transferred musculocutaneous flaps. In each frequency interval
(I–V ), the power is significantly higher in the LDP signal measured
on the intact skin compared to values obtained on the free flap
(P � 0.002 for each interval).
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rithmic frequency resolution (which is of particular
importance for the low-frequency content), whereas in
the study by Stauss et al. (43) spectra were estimated
using the fast Fourier transform.

There are several studies indicating that the oscilla-
tions at 0.1 Hz are due to resonance in the baroreceptor
pathway (4). However, in our study, no difference was
observed in the normalized spectral power at 0.1 Hz.
Bernardi et al. (5) have argued that SNA to the skin
displays an oscillation at 0.1 Hz, which directly induces
an oscillation in the vasculature. However, what they
failed to appreciate was that if blood pressure also
displayed an oscillation at 0.1 Hz, then it would be
apparent in the blood flow via a simple pressure to flow
relationship. It was shown that the major parts of skin
nerve activity controlling skin temperature are com-
posed of baroreceptor-independent components (35).
This, besides the improved low-frequency resolution
compared with the previous studies, may be a possible
explanation why in our study the skin SNA was not
found to be dominantly influencing the 0.1-Hz oscilla-
tion. Yet it remains to be clarified whether or not the
frequency of mechanical oscillations in the blood flow is
synchronized with the discharge frequency of SNs. It
might be that SNA only allows for the skin vascular
oscillations to exist through the production of general-
ized tone, and the resultant frequency of oscillation
could well be lower than that of the SN discharge. In
fact, the clear-cut divergences in both setups and the
results between Stauss et al. (43) and our study do
indicate that this assumption may be correct.

Recently, Macefield and Wallin (28) demonstrated
that the discharge of human cutaneous sympathetic
neurons is modulated by the respiratory and cardiac
frequencies. This might be taken as evidence that in its
control of the stiffness of the peripheral vessels, sym-
pathetic activity is also governed by the state of the
cardiac and respiratory rhythms. However, the basic
frequency of its autonomous discharge will only be
established by analysis of the low-frequency content of
the spontaneous sympathetic neural activity.

The differences between free flaps and intact skin
may also be due to the different skin temperature. It
was shown that skin temperature contains several
oscillatory components in the frequency interval of
�0.05 Hz (41), with the dominant frequency compo-
nents lying �0.01 Hz (27). Because cutaneous nerve
activity also controls skin temperature, a decrease in
the temperature oscillations of the flaps could be ex-
pected as a consequence rather than a cause of the
observed differences. However, the interplay between
skin temperature oscillations, blood flow oscillations
and adjacent SNA remains to be established by de-
tailed analysis of all three simultaneously recorded
signals.

Oscillations of local origin. Interval III, from 0.051 to
0.145 Hz, corresponds to �-oscillations as defined by
Kastrup et al. (23). Rhythmical variations with the
frequency �0.1 Hz were reported already in the early
studies of oscillations in the laser-Doppler signal of the
blood flow (39).

Kastrup et al. (23) have shown that the �-oscillations
were unchanged during local and ganglionic nerve
blockade and preserved in chronically sympathecto-
mized tissue, and they suggested their local nonneuro-
genic origin. Johansson and Bohr (21) demonstrated
that isolated small subcutaneous vessels show rhyth-
mic contraction. Furthermore, they proposed that this
rhythmic behavior must be due to synchronization of
contraction of many smooth muscle cells, indicating
that the separate cells are able to communicate with
each other. The passive local regulation of the blood
flow is often named the myogenic response (11, 22, 40).
It is a response to intravascular pressure elevation
mainly mediated by stretch-sensitive ion channels in
the smooth muscle cells. The oscillations with fre-
quency �0.1 Hz were shown to be preserved in free
flaps immediately after transplantation (42). The re-
sults of the present study might be taken as a further
evidence for the frequency interval at which the myo-
genic activity manifests in human cutaneous blood
flow. Namely, the normalized spectral power and am-
plitude in the frequency interval �0.1 Hz did not differ
in flaps compared with intact skin, thus illustrating
that the underlying mechanism of these oscillations is
probably of local myogenic origin.

Oscillations Observed in Other
Hemodynamic Parameters

It has long been recognized that the blood pressure is
characterized by several spontaneous oscillations, or
waves (32, 36). Besides the cardiac and respiratory
waves, slower waves were also detected. Different
terms are used in the literature to describe those
waves. Traube, Hering, and Mayer, in separate stud-
ies, were the first to describe slow waves in blood
pressure and the designation Traube-Hering-Mayer
waves is often used for all waves slower than respira-
tion. Attempts to identify and classify the waves also
resulted in their ordering: cardiac, respiratory, and
slow waves are also called waves of the first, second,
and third order. After it was shown that the heart rate,
cardiac contractility, and venous volume might fluctu-
ate with the same rhythms, several studies (1, 9, 24,
36, 48) were initiated to distinguish these waves ac-
cording to their origin. Many investigations (3, 16, 19,
20, 29, 31, 37, 44, 45, 49) have been performed to
resolve the involvement of the vasomotor component
and/or sympathetic control; however, the origin of
third-order waves is unknown. Here, we show that
oscillations with the same frequencies can also be ob-
served in the peripheral blood flow signal. Moreover,
applying the wavelet transform that allows for good
low-frequency resolution, we were also able to show
that waves slower than the third-order wave can be
well distinguished in the blood flow fluctuations. How-
ever, their relation to the waves observed in blood
pressure and heart rate still remains to be clarified as
well as the question of whether waves with the same
frequencies observed in other hemodynamic parame-
ters share a common physiological origin.
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Physiological and Clinical Implications

Vascular endothelial dysfunction has become a key
issue in cardiovascular biology, in particular with re-
spect to its role in the pathogenesis of arteriosclerosis,
essential hypertension, diabetes mellitus, and heart
failure (2, 10). Recently, the spectral analysis of laser-
Doppler signals from peripheral blood flow measure-
ments was shown to enable an in vivo noninvasive
evaluation of endothelial function (25, 46). Our present
study indicates that vascular sympathetic activity may
also be evaluated in a similar way. The role of SN
influence on the spatial distribution and level of skin
perfusion has been graphically demonstrated with the
laser-Doppler imaging technique (8). This study, how-
ever, strongly indicates that the presence of vascular
sympathetic activity in tissue, at any time point, can be
evaluated by examining the low-frequency domain of
collected laser-Doppler signals. This possibility is of
great interest for several diagnostic and therapeutic
purposes, the identification and distributive pattern of
SN degeneration in patients with diabetes mellitus
being only one example.

In conclusion, in the absence of neurogenic control,
but with a restored microcirculatory blood flow, the
clinical free flap transfer was used as a model for
studying the physiological origin of oscillations ob-
served in the peripheral blood flow signal. The differ-
ence between spectral properties of blood perfusion
signals measured on intact skin and free flap is mani-
fested in the frequency interval �0.05 Hz. Besides
oscillations in the frequency interval �0.01 Hz, which
were recently demonstrated to result from endothelial
activity (25), it was shown that the main difference
between the free flap and intact skin occurred in the
frequency interval between 0.021 and 0.052 Hz. The
compelling explanation is that the sympathetic control
of blood flow oscillations are expressed with a repeti-
tion time between 20 and 50 s. Furthermore, our re-
sults feature a noninvasive technique for evaluation of
sympathetic control of peripheral vascular activity,
which may be important both for diagnostic and for
therapeutic purposes.

The measurements were performed at the Department of Plastic
and Reconstructive Surgery, Malmö University Hospital, Malmö,
Sweden, within the European Concerted Action “Laser-Doppler
Flowmetry for Microcirculation Monitoring.”
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Lund University and The European Commission. A. Stefanovska
and M. Veber were supported by a grant from the Slovenian Ministry
of Education, Science, and Sport, and A. Stefanovska was also
partially supported by the Royal Society of London.
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7. Bračič M, McClintock PVE, and Stefanovska A. Character-
istic frequencies of the human blood distribution system. In:
Stochaos: Stochastic and Chaotic Dynamics in the Lakes, edited
by Broomhead DS, Luchinskaya EA, McClintock PVE, and Mul-
lin T. Melville, NY: American Institute of Physics, 2000, p.
146–153.
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The cardiac and respiratory systems each function in an oscillatory manner, providing a nice example of
coupled biological oscillators. The modulation of the cardiac frequency, called respiratory arrhythmia, has
long been known. Synchronization analyses have recently confirmed that, in a conscious healthy subject at
rest, the two systems can synchronize for a short episodes of time. In experiments with paced respiration
we show that the synchronization and modulation can coexist. The respiratory system is the driving system
at all respiration frequencies, whether paced or spontaneous.

Key words: biological oscillators, synchronization, modulation, direction of coupling, cardiovascular sys-
tem
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1 Introduction

Biological oscillators can be found at every level of
complexity, and for almost every living system [1].
Single cell activity is characterised by oscillations.
As cells cluster to form more complex systems, up
to the level of tissues and organs, the activity of
these complex structures remains oscillatory. With
increasing complexity, the number of possible inter-
actions rapidly increases and, in a biological system,
the cluster of oscillators at the microscopic level usu-
ally contains almost infinitely many units. At the
next higher level of complexity, however, their col-
lective activity can still manifest as a single oscil-
latory unit. This functional organisation is typical
of complex systems. The ideas were formulated for
the case of lasers by Haken [2, 3] and, following his
pioneering work, can now be understood to apply
to complex systems quite generally, including bio-
logical ones.

Complex systems are self-organised at many lev-
els and, for us their observers, the most difficult un-
solved task is how to distinguish appropriately be-
tween each level of complexity. Understanding and
revealing the organisational structure of a complex

system is a challenging task. Basically, following
the principles of synergetics, we seek clear signa-
tures of the organisational units that characterise
some given level of complexity, and then trace their
interactions. Here, we come again to the oscillator
as the basic unit for a complex dynamical system.
In a living system, for example, the regulation of a
variable is maintained through a dynamic balance
between activation (or excitation) and deactivation
(or inhibition) – a basic principle of an oscillator.
Although, the field of coupled oscillators and their
application to complex systems is still at an early
stage, many pioneering models in biology have al-
ready been proposed [4, 5, 6, 7, 8, 9, 10].

One of the most interesting physiological complex
systems – which at the same time is essential for the
function of the human organism – is the cardiovas-
cular system. It includes the heart, which pumps
the blood into a huge network of vessels. Before
returning back to the left heart, the blood is oxy-
genated in the lungs. At the macroscopic level, the
heart, the lungs and the vessels can be considered as
the basic organisational structures involved in trans-
port of the blood. The vessels are not rigid tubes
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but, rather, they play an active role in blood trans-
port. Although a detailed understanding of the ba-
sic units of the vascular regulation of blood flow has
yet to be reached, several organisational structures
have already been proposed. Here the main diffi-
culty is that of distinguishing between the organi-
sational units and their interactions. Many systems
are active in the transport of information within
the cardiovascular system, and it is often difficult
to separate them from the basic functional units.

The vascular regulation of blood flow, considered
on a time scale corresponding to one blood circula-
tion time, appears to involve myogenic, neurogenic
and endothelial activity. In a healthy subject at
rest, this time scale is around one minute, within
which the heart pumps an amount of blood equiva-
lent to the total amount in the organism. In what
follows, I shall review recent developments in the
understanding of the interactions between two of
the oscillatory systems involved in the regulation of
blood flow: the cardiac and the respiratory. My
interest in cardiovascular interactions was greatly
influenced by Hermann Haken. In the course of our
collaboration, which started at the beginning of the
1990s while I was still a PhD student, he introduced
me to the world of coupled oscillators and the pos-
sible outcomes of their many types of interaction.
The introduction of a coupled oscillator model to
describe cardiovascular dynamics [11, 12, 13] then
followed naturally. It is therefore a great pleasure
for me to dedicate to Hermann Haken the discussion
of cardiovascular interactions that follows below.

2 Instantaneous phases

To monitor cardiac action, signals corresponding to
its electrical activity (ECG) may be monitored. By
an appropriate choice of electrode placement (e.g.
two electrodes on the shoulders, and one on the
lowest left rib) the amplitude and sharpness of the
R-peak can be maximised, thereby minimising un-
certainties in its timing. Placing the electrodes over
bony prominences also minimizes noise resulting
from electrical activity of the surrounding muscular,
nervous or soft tissue. To record respiratory activ-

ity, various types of sensor have been used. An opti-
mal compromise between the comfort of the subject
and the quality of the signal can be obtained with
piezo, or infrared sensors. The sensor is inserted
in a rigid tape fastened around the thorax, and its
excursions are then monitored. A typical sample of
ECG and respiratory signals thus obtained from a
resting healthy subject is presented in Fig. 1.
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FIG. 1. A sequence of respiration and ECG signals
recorded simultaneously. Maxima in the respiration sig-
nal, and R-peaks in the ECG, are marked to obtain in-
stantaneous phases and frequencies.

Studies of the cardiorespiratory phase relations
were introduced by Koepchen, Hildebrandt and
Raschke (see [14, 15] and the references therein),
and Kenner and his collaborators [16]. Hildebrandt
reported preferred time delays between the onset of
inspiration and the preceding heart beat, and the
occurrence of an integer number of heartbeats per
respiratory cycle. The preference of integer ratios
existed only in statistical terms. Raschke investi-
gated phase and frequency coordination in different
states of the system and reported strong phase coor-
dination between the cardiovascular and respiratory
systems during sleep, which was diminished under
conditions of strain or disease. Both Hildebrandt
and Raschke proposed that synchronization, or fre-
quency and phase coordination as they named it, es-
tablishes a system of economical co-action and thus
favours the functional economy of the organism.

The notion of synchronization was for a long time
restricted to periodic oscillations. More recently,
new studies of cardiorespiratory synchronization
were initiated by the introduction of methods for de-
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tecting phase synchronization between non-regular
or chaotic oscillators (see [17] and the references
therein). In a broad sense, synchronization can be
treated as the appearance of some relationship be-
tween the states of interacting systems u1(t),u2(t),
characterised by their phases Φ1,Φ2 and their gen-
eralised phase difference, φn,m = nΦ1 − mΦ2. A
weaker condition of phase locking

|nΦ1 −mΦ2 − δ| < const , (1)

was proposed, in which case n:m phase locking man-
ifests as a variation of φn,m around a horizontal
plateau. The amplitudes of phase synchronized os-
cillators can be quite different, and need not be re-
lated. Phase synchronization is understood as the
appearance of a peak in the distribution of the cyclic
relative phase

Ψn,m = φn,m mod2π , (2)

and interpreted as the existence of a preferred stable
value of phase difference between the two oscillators.

Two methods are often used to detect instan-
taneous phases, Φi, of the interacting oscillators
from measured data: (i) marked events, and (ii) the
Hilbert transform. By the first method events that
characterise a cycle of an oscillator are first deter-
mined. Phases are then usually interpolated using
linear interpolation, which introduces an approxi-
mation. A 2π increase in the phase is attributed to
interval between subsequent marked events. Within
this interval, the instantaneous phase is

Φ(t) = 2π
t− tk

tk+1 − tk
+ 2πk , tk ≤ t < tk+1 (3)

where tk is the time of kth marked event. Thus
obtained, the phase is a monotonically increasing
piecewise-linear function defined on the real line.
The second method, based on the Hilbert trans-
form, depends strongly on the quality of the mea-
sured signal representing the dynamics of the ob-
served oscillator. In most living system, measured
signals are an approximation of the dynamics of the
oscillatory process under observation, and are often
corrupted by interfering activity of other physiolog-
ical processes and noise. In both cases, therefore,

phase detection involves compromise, and probably
both methods should be applied before one reaches
a final interpretation of a set of measurements.

The introduction of nonlinear methods, and the
concepts of generalised and phase synchronization,
further illuminated the problem and confirmed that
in the waking state of healthy humans cardiorespira-
tory synchronization usually occurs as brief episodes
[18, 19]. It was found that the synchronization
episodes at rest were ∼10 times longer (∼1000
s) in athletes [18] than non-athletes [19]. From
these results it may reasonably be inferred that the
inter-oscillator coupling strength, as revealed by the
lengths of the synchronization episodes, constitutes
a useful piece of information about the state of the
organism. This idea is apparently confirmed by
measurements on a critically ill patient in coma [13],
where there is absolutely no synchronization at all.

Another physiological state where synchroniza-
tion phenomena are of particular importance is that
of anæsthesia [20]. Very long episodes of synchro-
nization (>10 minutes) were found to occur in anæs-
thetised rats: phase-transition-like phenomena were
observed when the synchronization ratio changed in
stages from 1:2 to 1:5 as the anæsthesia deepened;
and the same sequences was then followed in reverse
as the anæsthetic wore off again. If the same phe-
nomenon occurs in humans, then there is obvious
potential in using measures of synchronization for a
noninvasive evaluation of the depth of anæsthesia.

2.1 Quantifying synchronization

The problem of detection synchronization from real
data is however still burdened with many difficul-
ties. Noise plays an essential role. In the presence of
weak noise, φn,m fluctuates around a constant value,
and the condition of frequency locking is only ful-
filled on average, i.e. n〈f1〉 = m〈f2〉. Strong noise
can also induce phase slips. In such cases, the ques-
tion of whether the oscillators are synchronous, or
not, cannot be answered uniquely, but only in a sta-
tistical sense. Note that in the case of cardiorespira-
tory interactions, the noise originates not only from
measurements and external disturbances, but also
from the fact that there are other subsystems that
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are active in the cardiovascular control [12] whose
influence is considered as noise in synchronization
analysis.

Two tools have been introduced to improve the
reliability of synchronization analyses: (i) synchro-
grams [18]; and (ii) synchronization indices [21].

Synchrograms

By definition, m:n phase synchronization can be
detected by plotting the generalised phase differ-
ence φn,m versus time and looking for horizontal
plateaus. For noisy systems the cyclic relative phase
Ψn,m is used instead, to avoid the impact of noise
induced phase slips. There are however two prob-
lems with this approach: (i) the integers n and m
can only be obtained through trial and error, by
checking a wide range of values; and (ii) if several
synchronization regimes exist, the method cannot
reveal them, nor the transitions between them.

To overcome these problems, the cardiorespira-
tory synchrogram was introduced [18] (see also [17]).
It is constructed by plotting the normalized relative
phase of a heartbeat within m respiratory cycles

Ψm(tk) =
1
2π

(Φr(tk) mod 2πm) , (4)

where tk is the time of the kth heart beat and Φr is
the instantaneous phase of respiration. Φr is defined
on the real line and is observed stroboscopically at
times tk. In perfect n:m phase locking, Ψm(tk) ex-
hibits n horizontal stripes. In the presence of noise,
the stripes become broadened. By this technique
only one integer, m, need be chosen by trial, and
several different sequential regimes can be identified
within a single plot.

Fig. 2 (left column) shows five cardiorespiratory
synchrograms obtained from a young healthy sub-
ject at rest. The ECG and respiration were recorded
during spontaneous respiration (top synchrogram),
and during paced respiration with the respiration
frequency kept constant below (second and third
plots) and above (fourth and fifth plots) the fre-
quency of spontaneous respiration. To obtain a con-
stant respiratory frequency the subject was asked to
follow the tick of a metronome. The results will be
presented in detail elsewhere; here we illustrate the

various synchronization ratios that can be obtained
during paced respiration.

Indices of synchronization

Two indices have been proposed for the quantitative
evaluation of synchronization based on: (i) Shan-
non entropy; and (ii) conditional entropy [21]. For
the data presented in Fig. 2 (right column, dashed
lines) the conditional probability was used and we
shall now describe it briefly. Accordingly, the phase
of the second oscillator is observed at fixed values of
the first oscillator, Φ1mod2πm. We divide the inter-
val of each phase, [0, 2πm] for Φ1(tk), and [0, 2πn]
for Φ2(tk), into N bins and calculate

rl(tk) =
1

Ml

∑
eiΦ2(tk) l = 1, . . . , N , (5)

for all k such that Φ1(tk) belongs to bin l and Ml

is the number of points in this bin. If there is a
complete mutual interdependence between the two
phases, |rl(tk)| = 1, whereas it is zero if there is no
dependence at all. Finally, we calculate the average
over all bins

λ =
1
N

∑
|rl(tk)| , (6)

which measures the conditional probability of Φ2 to
have a certain value provided Φ1 is in a certain bin.

As different values for the frequency of respira-
tion were chosen in our experiments, several syn-
chronization regimes were obtained. Therefore, a
range of synchronization indices was calculated, for
m = 1 and n = 4, . . . , 10. Maximal values are
presented in figure 2 (right column, dashed lines).
Typically, other values were close to zero. From pre-
sented results we may infer that a tendency towards
synchronization exists, which appears in episodes,
both during spontaneous, as well as during paced
respiration.
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FIG. 2. Synchrograms (left column), indices of synchronization (right column, dashed lines) and direction of coupling
(right column, solid lines) between the cardiac and respiratory oscillations during spontaneous (top) and paced res-
piration. Lover (second and third raw) and higher (fourth and fifth raw) than spontaneous frequency of respiration
were selected for paced respiration (for values of frequencies see Fig. 3). While the pattern of synchronization slightly
changes with the frequency of paced respiration, in all cases, during spontaneous, or paced respiration, the respiration
appears to be the driving system.

Here, however, we should point that the indices are calculated as an average value within a chosen window.
In our case a 80 s window was used, slid with an overlap of 0.6. This window was chosen to cover 8 periods
of the slower oscillator – the respiration. As quite low values of the respiratory frequency were also chosen,
∼0.1 Hz being the minimum, it was these values that dictated the choice of window length. At the higher
respiration frequencies e.g. ∼0.27 Hz (see Fig. 3, left column), however, such a window contains a large
number of periods, ∼21 in this example. Within this interval the level of synchronization changes so that the
indices represent averages only. A shorter window would have been inappropriate for the lower frequencies
of respiration and the obtained value would be unreliable. The problem described here is of a quite general
nature and is associated with the fact that the cardiovascular system has time-variable dynamical properties.
In analysing time series related to it we therefore face the fact that the length of an optimal window within
which we can analyse its dynamics, or the dynamics of its subsystems in this case, changes with time.

2.2 Direction of coupling

Having estimated the time series of the phases of our interacting oscillators, Φ1,2(tk), with δt as a sampling
interval and tk = kδt, we may ask another question: whether the phase dynamics of one oscillator is
influenced by the phase of the other, or their influence is mutual? Several numerical methods have been
recently proposed, both, based on information theory approach [22, 24], or phase dynamics approach [23],
for detecting direction of coupling in interacting oscillators. Here, we present results using phase dynamics
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approach. A comparative study, using several methods, will be presented elsewhere.
In phase dynamics approach, we first compute for each time point the increment ∆1,2 = Φ1,2(tk + τ) −

Φ1,2(tk). The choice of time delay was shown not to be important [23]. This increment is then considered as
generated by some unknown two-dimensional noisy map ∆1,2(k) = F1,2(Φ1,2(k),Φ2,1(k)) + η1,2(k). Several
methods have been proposed to estimate the dependence of ∆ on Φ1 and Φ2 and coefficients c1 and c2, which
represent the cross-dependence of phase dynamics of the two systems were obtained. In this way an index
of the direction of coupling was proposed, which can be written for the cardiac and respiratory systems in
the form

dr,h =
cr − ch

cr + ch
. (7)

Normalized in this way the index varies from 1 in the case of unidirectional coupling (r → h) to -1 in the
opposite case (h → r). Vanishing index dr,h = 0 corresponds to symmetric bidirectional coupling.

The index of the direction of couplings is strictly > 0.5 in all considered cases, with spontaneous or paced
respiration, indicating that in awaken healthy subjects at rest the interaction between the two systems is
unidirectional.

3 Instantaneous frequencies
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FIG. 3. Instantaneous respiratory fr, (left column) and cardiac, fh (middle) frequencies, obtained in five measurements
on a young healthy subject. The subject was first asked to breath spontaneously (top). Four recordings with paced
respirations were then performed, two with frequency lower (second and third rows) and two with frequency higher
(fourth and fifth rows) than the spontaneous frequency of respiration. To keep the respiration constant the subject
was asked to follow the tick of a metronome. The respiratory frequency can also be observed in the time-frequency
plot of the instantaneous heart frequency (right), due to modulation of cardiac frequency by the respiration.
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Another type of interaction between the respira-
tory and cardiac oscillations has been known since
the 18th century when Hales carried out his cel-
ebrated experiments [25] on a horse. He found
that the heart rate increased on inspiration and de-
creased on expiration. This frequency modulation
phenomenon, known as respiratory sinus arrhyth-
mia, has been studied extensively [26, 27] since then.

Where the coupling between the oscillators is
strong, it can give rise either to strong modulation
or to strong synchronization; but these are com-
peting processes that by definition cannot occur si-
multaneously. Which of them is manifested must
depend on the conditions. By analogy with the
classical theory of synchronization [28], one may in-
fer that the coupling gives rise to synchronization
if the parameters are such that the working point
lies within an Arnold tongue but that, otherwise, it
produces modulation.

In reality, however, the cardio-respiratory inter-
action seems to function in a more complex way.
Frequency modulation of the heart by respiration
can be detected during spontaneous as well as
paced respiration (Fig. 3). The fact that the fre-
quency modulation of the heart rate by respira-
tory rhythm, known as respiratory sinus arrhythmia
(RSA), can coexist with synchronization between
the two rhythms may be interpreted in at least two
ways. First, at least two different types of coupling
may coexist between the cardiac and the respira-
tory systems. An adjustment of the two rhythms
seems to be conducted by the central nervous sys-
tem. The RSA on the other hand appears to be
result of a mechanical coupling between respiration
and the cardiac function, as discussed earlier [26].
Although there is currently no clear and unique un-
derstanding of the mechanisms of cardiorespiratory
interaction, two different mechanisms of coupling
have often been reported. Galletly has noted that
the sinus arrhythmia appears to persist at all levels
of cognitive arousal, whereas phase coupling is seen
best during relaxation, sleep and anæsthesia [29].
Secondly, our result may also be taken as illustra-
tion that more than two rhythms are involved in the
cardiovascular regulation.

4 Summary

Cardiovascular interactions, and the coexistence of
synchronization with modulation, have been illus-
trated through experiments with paced respiration,
yielding the results summarized in Fig. 4. It
was shown that the respiratory system is the driv-
ing system, whether paced or spontaneous. Time-
variability is one of the key features of the sys-
tem. It is the non-stationarity of the frequency that
presents the most challenging unsolved problem as-
sociated with the analysis of dynamical properties
from measured time series.

?

Cardiac Respiratory

Rest of the
cv system

FIG. 4. Results obtained during paced respiration show
that, for conscious subjects in repose, respiratory activ-
ity influences the cardiac system directly. Whether the
cardiac system can influence respiratory activity directly
is at present unclear. It is evident, however, that indi-
rect interaction between the two systems exists, either
via the higher centres, or via the other peripheral oscil-
latory processes (related to the myogenic, nurogenic or
endothelial activity), or both.

Interactions and couplings characterize the state
of the system. An important future aim must be
the development of a coupled oscillator model that
can provide a description of the different states of
the system, thereby quantifying the couplings, and
some initial progress has already been made [30] in
this direction.
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Abstract

Signals derived from the human cardiovascular system are well known to exhibit highly com-
plex, nearly periodic, oscillatory behaviour whose nature is something of an enigma. It has, for
example, been variously described as chaotic, fractal, stochastic, and subject to 1=f 1uctuations—
and its true nature is still the subject of vigorous debate. We review and describe some recent
experiments that illuminate the problem and discuss a combination of noise and almost periodic
frequency modulation as a signature of the system dynamics.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Physiological signals derived from humans are extraordinarily complex—faithfully
re1ecting their origin in what is arguably the most complicated mechanism ever to
have existed. Because they must re1ect ongoing processes that normally occur unseen,
within the interior of the body, such signals repay close attention. In particular, they can
be used to diagnose incipient pathophysiological conditions before symptoms become
obvious. A well-known example is the electrocardiogramme (ECG) signal, representing
the electrical activity of the heart. ECG measurements have been used for diagnostic
purposes for almost a century. For the >rst several decades of such measurements,
attention was focussed mainly on the detailed shape of the approximately periodic
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pulses seen in the signal. More recently, however, attention has shifted to the separation
of the pulses because it has become apparent that the heart of a healthy human in
repose does not beat at a constant rate. Rather, the cardiac frequency varies in time, a
phenomenon known as heart-rate variability (HRV).
Gene Stanley and his group have probably done more than anyone to try to

characterise and analyse cardiovascular signals, so it is a particular pleasure to have
been invited to present a paper on this topic in Messina. Approaches to the problem
introduced by diDerent authors have included, for example, studies of: Fourier spec-
tra [1]; chaotic behaviour [2,3]; wavelet spectra [4–6]; Karhunen–LoIeve decomposition
[7]; scaling properties [8–13]; Lyapunov exponents [14]; multifractal properties [15,16];
correlation integrals [17]; 1=f spectra [18–20]; and synchronization properties [21–25].
The two extreme perceptions of HRV consider it to be deterministic in origin, e.g.
sometimes resulting in deterministic chaos [2,3], or stochastic [26]. It is not imme-
diately obvious which of these several diverse approaches is the most promising: the
criteria to be met, presumably, are that the technique of analysis should (i) be able
to deal successfully with time variations of characteristic frequencies and amplitudes,
and that (ii) it should yield some insight into the physiological processes responsible
for the HRV, so that (iii) their individual function—normal or pathological—can be
evaluated separately for diagnostic purposes.
In this paper we focus on the results obtained through use of one of the techniques

mentioned above, wavelet analysis [4,27], and we point out that it apparently meets
all three criteria. In Section 2 we summarise the experimental information obtained
by this method and, in Section 3 we show how it can be accounted for in terms of
mutually interacting oscillatory processes each of which appears to relate to a distinct
physiological mechanism. In Section 4 we report the present status of attempts to
model the cardiovascular system as a set of coupled oscillators, showing that important
features of the measured signals can be reproduced by the model. In Section 5 we
draw conclusions and try to point the way forward.

2. Cardiovascular signals

Many diDerent protocols have been used for acquiring cardiovascular data, one of the
most thorough being that described in Ref. [27] where ECG, blood pressure, and blood
1ow rate are recorded simultaneously over a period of about 20 min. Interest centres
on the blood1ow circulatory control mechanisms, and so any processes occurring on
timescales longer than about 1 min (the average circulation period) are ignored. For
healthy subjects in repose, the results are typically as in Fig. 1(a); Fig. 1(b) shows
the averaged wavelet transform of the same data, but calculated over the full 20 min.
A detailed discussion of such results is presented in Ref. [27], but it is immediately
evident that

• There are (at least) :ve characteristic spectral peaks.
• Remarkably, the same, or almost the same, peaks appear in all the spectra, regardless
of where or how the corresponding signals were recorded, though there are consid-
erable diDerences in amplitude.

• All the peaks are broadened.
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A clue to the origin of some of the broadening can be found by inspection of the
full time-frequency wavelet spectrum, part of which is shown in Fig. 2. It can be seen
that both the instantaneous amplitudes and central frequencies vary in time, giving rise
to a considerable part of the broadening observed in the averaged spectra of Fig. 1(b).
What is the origin of this frequency and amplitude wandering? It appears that the

instantaneous frequency of any given spectral peak oscillates. It does so at the frequency
of the spectral peak next-lowest in frequency, with contributions coming from all of
the other oscillatory processes too. HRV, for example, is a signal representing the
variations of the cardiac frequency, and from Fig. 1(b) we can see (third spectrum
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from the top) that its oscillations are also modulated by the processes with frequencies
near 0.011, 0.026, 0.10, and 0:18 Hz (as well as its own second harmonic at 0:036 Hz).
Such observations can be construed as evidence that the >ve oscillatory processes are
mutually coupled. They seem to in1uence each other via couplings at least some of
which are parametric, thus giving rise to the observed frequency modulation.

3. Interacting oscillatory processes

With varying degrees of con>dence, all of the oscillatory processes can now be
related to underlying physiological mechanisms. Their characteristic average frequencies
vary slightly between individuals, and, in some cases, between diDerent measurement
locations, but in each case they lie within de>nite limits. The physiological origins of
the peaks at 1 Hz (heart beat), and 0:2 Hz (respiration) are obvious. It is reasonably
well established that the peak at 0:1 Hz is attributable to intrinsic myogenic activity
of smooth muscles [28–30]. The 0:03 Hz peak is apparently connected to autonomous
nervous control [31,32] (neurogenic), and there is strong evidence that the 0:01 Hz
peak arises from metabolically related endothelial activity [33,34].
Thus wavelet analysis of signals from the cardiovascular system provides a nonin-

vasive technique for acquiring information about these distinct physiological processes.
Additional information, yielding deeper insight into the dynamics, can also be inferred
from the couplings between the processes. These can manifest themselves either through
mutual modulation (Fig. 2) or through synchronization between two or more of the
processes. Which of these phenomena occurs in any given case probably depends partly
on the strength of the coupling and partly on how close in frequency low harmonics of
the processes would be to each other in the absence of coupling. In practice, measure-
ments on healthy subjects show transient episodes of cardio-respiratory synchronization
lasting typically a few tens of seconds. The average length of these episodes depends
on the physiological state, and diDers between, e.g. athletes, sedentary individuals, and
patients with pathological conditions such as diabetes.
Synchronization eDects are potentially of particular interest because of the informa-

tion they carry about the couplings. But, with the exception of the cardio-respiratory
coupling, they have not yet been closely studied. A major diLculty is that, unlike the
heart and respiration, the lower-frequency processes do not give rise to separate sig-
nals that can be acquired noninvasively. In practice, therefore, it is necessary to infer
the existence or absence of synchronization from univariate time series. This chal-
lenging problem is already being approached in three distinct ways: (i) >ltration of
the univariate data to create two “separate” signals that can then be tested for mutual
synchronization [23] using established techniques such as synchrogrammes [21] or syn-
chronization indices [35]; (ii) the use of angles-of-return-time maps [25,36]; and (iii)
bispectral analysis [37]. In each case, it has been possible to derive information about
the presence or absence of synchronization between the 0:1 Hz (myogenic) process
and respiration or heartbeat. Problems of resolution—in time, frequency and phase—
have so far made it impossible to obtain synchronization information for the 0:03 Hz
(neurogenic) and 0:01 Hz (endothelial) processes.
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Note that the three lower frequencies are derived in each case from spatially dis-
tributed processes. Within each of them, there must be signi>cant global synchroniza-
tion because, if this were not the case, low frequency oscillations would be undetectable
in centrally measured quantities such as HRV (Fig. 1(b)) because they would all have
averaged out.
To make further progress, it is necessary to develop a model to which the cardio-

vascular data can be >tted. One may then hope to characterise diDerent physiological
and pathophysiological conditions quantitatively in terms of the model parameters.

4. A coupled oscillator model of the cardiovascular system

Given the clear evidence of (a) well-de>ned spectral peaks (implying the presence of
oscillatory processes) and (b) amplitude and frequency modulation, and synchronization
eDects (all indicating the existence of inter-oscillator interactions), it is natural to try to
model the system with a set of oscillators [38] whose couplings [39] can be adjusted
to try to reproduce the observed phenomena.
Little experimental information exists yet about either the nature of the couplings or

the details of the oscillators. So we have used [38] the PoincarOe oscillator

ẋi =−xiqi − !iyi + gxi(x);

ẏ i =−yiqi + !ixi + gyi(y); qi = �i(
√
x2i + y

2
i − ai); (1)

where, x; y are vectors of the oscillator state variables, �i; ai, and !i are constants
and gyi(y) and gxi(x) are linear coupling vectors. Although to some extent this choice
is arbitrary, (1) possesses properties of structural stability, robustness and symmetry
consistent with physiological understanding and the analyses of measured time series.
Using a numerical simulation [39] of >ve coupled oscillators (1), with characteristic

frequencies chosen to accord with measured data (Fig. 1), and amplitudes set initially
to unity, we >nd that we can generate signals that to the eye seem in many respects
to resemble those from the cardiovascular system. We were especially interested to
establish whether frequency and amplitude modulation would occur with short episodes
of synchronization at random intervals, as observed in the experiments. The investiga-
tions are still at an early stage, but we have already established: (a) that the observed
depth of modulation requires parametric couplings (as expected); (b) that with appro-
priately chosen parameter values parametric modulation indeed gives rise to episodes
of synchronization, but of course in a totally deterministic fashion with equal intervals
between the episodes; and (c) with purely linear couplings, and added noise (random
1uctuations), the synchronization episodes occur brie1y and randomly just as observed
in reality. An example showing the modelling of cardiorespiratory synchronization is
shown in Fig. 3. It appears, therefore, that both linear and parametric couplings exist
and that it is essential to take into account the in1uence of stochastic eDects resulting
from the (unmodelled) rest of the system.
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Fig. 3. Results of modelling with linear couplings, in the presence of 1uctuations. (a) and (b) The time
series showing the rhythmic activities of the cardiac and respiratory 1ow components. (c) The corresponding
cardio-respiratory synchrogram. (d) Power spectrum of oscillation in the blood 1ow generated by the cardiac
activity. After Ref. [39].

5. Conclusions

Information derived from analysis of cardiovascular signals in the time-frequency
and time-phase domains has led to a coupled oscillator model able to reproduce many
features seen in the data. From the model, we conclude that cardiovascular signals
have a strong deterministic element, but that random noise (i.e. external in1uences
and all eDects not explicitly considered) also plays a crucially important role. Our
approach meets all three of the criteria mentioned in Section 1. In particular, it relates
the underlying physiological processes to particular spectral peaks and thus allows
them to be studied individually. Furthermore, it promises quantitative evaluation of
the couplings between them. The latter feature is potentially of particular interest for
diagnosis and treatment because it enables the function and health of the cardiovascular
system as a whole to be evaluated.
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(Received 30 June 2000)

Phase synchronization between cardiac and respiratory oscillations is investigated during anesthesia in
rats. Synchrograms and time evolution of synchronization indices are used to show that the system passes
reversibly through a sequence of different phase-synchronized states as the anesthesia level changes,
indicating that it can undergo phase transitionlike phenomena. It appears that the synchronization state
may be used to characterize the depth of anesthesia.

PACS numbers: 87.19.Hh, 05.45.Tp, 05.45.Xt, 87.19.Uv

Whenever two or more oscillatory processes are weakly
coupled, there exists the possibility of their becoming syn-
chronized. It is a scenario that is ubiquitous in nature,
including living systems where rhythmic processes take
place on widely differing time scales, ranging from mil-
liseconds for single cell activity up to years for ecological
changes.

Living systems are becoming increasingly accessible to
mathematical modeling using the methods of dynamical
systems theory. However, they are inherently nonstation-
ary, being characterized by many oscillatory processes
whose frequencies also change in time. The fact that
they are quasiperiodic (with several characteristic frequen-
cies) and nonstationary makes them difficult to study since,
strictly, most of the methods for linear and nonlinear time
series analysis require stationarity. The recently proposed
concept of phase-synchronization analysis of noisy nonsta-
tionary bivariate data [1,2] provides a promising method
for reconstructing their dynamics.

In this Letter we use the concept of synchronization to
analyze interactions between cardiac and respiratory os-
cillations during general anesthesia in rats. Under resting
conditions, the cardiovascular-respiratory system has been
shown to be characterized by oscillatory processes on mul-
tiple time scales in both humans [3] and rats [4]. It has
long been recognized that heart and respiratory activity in-
teract, leading, e.g., to frequency modulation of the heart
rate by respiration, known as respiratory arrhythmia [5].
The adjustment of the rhythms of the two oscillators may
be expected to give rise to synchronization.

Early studies of the dynamics of coordinated activity
between the respiratory and cardiovascular systems [6,7]
assumed they behaved as almost periodic oscillators. His-
tograms of ratios of their periods were analyzed and, for
example, an n:1 synchronization between the cardiac and
respiratory rhythms was found in healthy subjects during
sleep [7]. Entrainment was also found to occur in anes-
thetized rabbits [6] and humans [8]. It was proposed that
synchronization (or, as named, frequency and phase co-

ordination) establishes a system of economical coaction
and thus favors the functional economy of the organism
[7]. In another study, however, only weak coupling be-
tween cardiac and respiratory rhythms was found and it
was concluded that the two rhythms are generally not phase
locked [9].

The development of nonlinear methods has brought new
attention to this problem [10]. Recently, using the concept
of synchronization analysis in chaotic, noisy, and nonsta-
tionary oscillators, episodes of phase synchronization be-
tween cardiac and respiratory oscillations were observed
in resting humans [11]. Cardiorespiratory synchronization
during paced respiration [12] and heart synchronization to
external stimuli [13] were also demonstrated. It appears
that the degree of synchronization at rest differs in athletes
(synchronization periods �1000 s [11]) and nonathletes
(�100 s [14]), and is inversely related to the extent of fre-
quency modulation of the heart rate. Therefore, we may
expect that a better understanding of phase and frequency
relations among the oscillatory processes involved in blood
circulation may lead to deeper insight into the state of the
system, with corresponding diagnostic possibilities.

Here we investigate phase synchronization during the
state of anesthesia in rats, which in practice can be studied
under more precisely controlled conditions than are usu-
ally possible for humans. It has been shown that the dy-
namics of the cardiovascular-respiratory system in rats [4]
possesses similar features to those observed in humans,
despite the cardiac and respiratory rhythms in rats being
approximately 4 times faster than in humans. Moreover,
during anesthesia in rats, respiration need not be assisted.
This is an important point, as paced respiration has already
been shown to influence the state of cardiorespiratory syn-
chronization [12].

The electric activity of the heart (EKG) and excursions
of the thorax, which are proportional to respiratory activ-
ity [15], were noninvasively recorded (Fig. 1) while the
breathing remained spontaneous and unassisted. Using a
16 bit A�D converter, each time series was digitized at

0031-9007�00�85(22)�4831(4)$15.00 © 2000 The American Physical Society 4831
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FIG. 1. Extracts from typical respiratory and EKG signals
recorded from a rat in anesthesia. The y axes are in arbitrary
units.

a sampling rate of 2000 Hz and recorded over the en-
tire duration of anesthesia ��120 min�. Recording started
5–10 min after anesthetic drugs [16] were injected and
ended 5–10 min after the first signs of recovered reflex re-
sponses, detected by a skin pinch test [17], were observed.
Five rats were recorded in the same way. On each ani-
mal the recording was repeated after one week, using the
same anesthetics and concentrations. The synchronization
analysis presented below revealed the same pattern in all
animals and was well reproduced in the second recording
in each case.

The instantaneous cardiac, fh, and respiratory, fr , fre-
quencies and their ratio were first calculated. To calculate
the instantaneous frequency the marker events method was
used. The times of R peaks in the EKG signal and maxima
of inspiration were taken as markers. Peaks were detected
automatically and also manually checked. One oscillatory
cycle was determined as the interval between two consecu-
tive peaks in each time series, at times tk and tk11. The in-
stantaneous frequency was taken to be f�t� � 1

tk112tk
, and

set constant within one cycle. In this paper, we use the
same method to calculate the relative cyclic phase.

Both frequencies were found to undergo dramatic
changes during the anesthesia (Fig. 2). During the first
�25 min, fh decreases from 4 to 3.2 Hz; it then increases
and decreases again and, after �70 min, varies randomly
between 3.5 and 4.5 Hz. The fr slowly decreases from 2 to
�0.8 Hz until at �40 min, it begins to increase again; it
returns to its initial value of 2 Hz at �70 min, at which
point it becomes highly variable, between 1 and 4 Hz.
Consequently, fh�fr first increases, from 2 to 5, then de-
creases back to 2 (top graph in Fig. 3), and as the effect of
the anesthetic drugs vanishes it becomes highly variable,
spanning a wide amplitude range, between 1 and 4.

The instantaneous cyclic relative phase between cardiac
and respiratory activity was then calculated. This quan-
tity has been discussed in several recent papers [1,2,11,18]
but, briefly, the underlying idea is as follows. Classically,
synchronization of two periodic nonidentical oscillators is
understood as an adjustment of their rhythms, or lock-
ing (entrainment) of their phases, wn,m � nf1 2 mf2 �
const, where f1 and f2 are phases (here defined on the
whole real line and not on the circle �0, 2p�), n and m
are integers, and wn,m is the generalized phase difference,
or relative phase. In this simplest case, the condition for
phase locking is equivalent to the notion of frequency
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FIG. 2. Evolution of the instantaneous cardiac and respiratory
frequencies during the period of anesthesia. The right-hand
column shows the corresponding distributions.

locking nf1 � mf2, where f1,2 � � �f1,2� and the brack-
ets mean time averaging. If n periods of the first oscillator
have exactly the same duration as m periods of the second
one, the rhythms are n:m entrained.

Recently, the concept of synchronization was gener-
alized to chaotic systems [19] and synchronizationlike
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FIG. 3. Evolution of phase-synchronization measures during
anesthesia. Top to bottom: frequency ratio, cardiorespiratory
synchrogram, and 1:2, 1:3, 1:4 and 1:5 synchronization indices,
respectively. Occurrence of 1:n synchronization is demonstrated
both by the appearance of n plateaus in C1 and by l1,n ap-
proaching unity. The reflex responsiveness from the skin pinch
test [17] is given at the top.
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phenomena have also been reported in purely stochastic
systems, where the noise controls a characteristic time
scale [20]. For noisy, chaotic systems and/or systems with
modulated natural frequencies a weaker condition of phase
synchronization, jwn,mj � jnf1 2 mf2 2 dj , const,
where d is some (average) phase shift, was introduced
[1,2]. Accordingly, synchronization is understood as
the appearance of peaks in the distribution of cyclic
relative phase Cn,m � wn,m mod2p and interpreted as the
existence of a preferred stable value of phase difference
between two oscillators. In such a case, the n:m phase
locking is manifested as a time variation of Cn,m around
a horizontal plateau.

In analyzing synchronization, the integers n and m
should both be determined. In the case of two interacting
noisy oscillatory processes, n and m change in time. One
possibility (similar to an earlier proposed method of en-
trainment analysis [6]), known as the phase stroboscope, or
synchrogram, is to fix the value of m and observe changes
of n in time [11]. Accordingly, the cardiorespiratory syn-
chrogram is constructed by plotting the normalized rela-
tive phase of a heartbeat within m respiratory cycles,
Cm �

1
2p ���fr�tk� mod2pm���, where tk is the time of kth

heartbeat and fr is the instantaneous phase of respiration.
Here we focus on phase synchronization for m � 1

since, for most of the time, an integer value of the in-
stantaneous frequency ratio was observed. We calculated
the normalized relative phase, C1, directly from the mea-
sured data, exploiting the fact that both signals contain
sharp peaks that clearly mark the instantaneous cycles (see
Fig. 1). Each successive peak was marked as an equiva-
lence of one oscillatory cycle, corresponding to which a
2p increment was added. The instantaneous phase is then

f�t� � 2p
t 2 tk

tk11 2 tk
1 2pk, tk # t , tk11 , (1)

where tk is time of kth marker event. Defined in this way
the phase is a monotonically increasing piecewise-linear
function of time defined on the real line.

Usually, the first step in searching an n:m locking is
to look for horizontal plateaus in C1, revealing the value
of n in cases when synchronization exists. The distribu-
tion of Cn,m�t� is then a d function, smeared in the pres-
ence of noise. For strongly nonlinear oscillators it can be
nonuniform even in the absence of noise [2]. To charac-
terize the strength of synchronization we therefore need a
robust quantitative measure. Since in noisy systems phase
synchronization can be understood in a statistical sense as
the existence of preferred values of generalized phase dif-
ference, measures based on quantifying the distribution of
phases

h � f2 mod2pnjf1 mod2pm�u (2)

were proposed. We will use an index based on conditional
probability which was introduced in [18] and was shown
to facilitate reliable detection of synchronous epochs of
different order n:m [21]. Accordingly, the phase of the

second oscillator is observed at fixed values of the phase
of the first oscillator, u. The interval of each phase f1 and
f2, �0, 2pm� and �0, 2pn�, respectively, is divided into N
bins. The values of f1 mod2pm that belong to bin l are
denoted as ul , while the number of points inside this bin
is denoted as Ml , and, by using Eq. (2), Ml values of hj,l ,
j � 1, . . . , Ml , are calculated.

If there is no synchronization between the oscillators, a
uniform distribution of hj,l can be expected on the interval
�0, 2pn�, or else it clusters around a certain value result-
ing in a unimodal distribution. Hence, the distribution is

quantified as rl�tk� �
1

Ml �tk�
PMl �tk�

i�1 eif2�tj� for each j when
f1�tj� belongs to the lth bin and tk 2 tp�2 # tj , tk 1

tp�2. Ml�tk� is the number of points in this bin at the kth
instant. An average over 10 periods, tp , of the slower os-
cillator was used [18]. Where the phases are completely
locked, or completely unlocked we obtain jrl�tk�j � 1 or
jrl�tk�j � 0, respectively.

To improve reliability, we also calculate the average over
all bins and obtain the index of synchronization ln,m�tk� �
1
N

PN
l�1 jrl�tk�j. Accordingly, ln,m is a measure of the

conditional probability that f2 has a certain value within
lth bin when f1 belongs to this bin.

Some typical results are shown in Fig. 3. The syn-
chrogram, C1�t�, indicates immediately that several phase-
synchronization states occur during anesthesia. This is
confirmed by time evolutions of the synchronization in-
dices, l1,n, which were obtained using a sliding window
with tp � 8 s. Three distinct stages during anesthesia may
be distinguished from the evolutions of fh�fr , C1, l1,2,
l1,3, l1,4, and l1,5. Stage 1, 0–40 min from the start of
recording, may be defined as the interval during which
the frequency ratio increases. Stage 2 of the recording
(40–70 min) is where the frequency ratio decreases again.
Stage 3 consists of the interval (70–100 min) in which the
frequency ratio is hugely variable around a steady value.
These same three stages were observed in all recordings,
which lasted between 70 and 130 min (until the rat started
to run freely).

During stage 1 all four states of synchronization, 1:2,
1:3, 1:4, and 1:5, are clearly present and gradually switch
one into the other. The 1:2 phase-locked state seems to be
observed for as long as a reflex response (tested by skin
pinch test [17]) can still be obtained (depicted at the top
of the figure). Approximately at the time when the re-
flex disappears, the transition to 1:3 phase locking starts,
which then changes into 1:4 locking, followed by 1:5 lock-
ing. One possible explanation is that nerve conductivity
decreases during this initial state of anesthesia, and this
causes changes of the overall nervous control of the car-
diorespiratory system, which then results in a series of
phase-synchronized states.

As the effect of the drugs starts to decline, the phase-
synchronization states switch back in reverse order. The
strength of phase synchronization is slightly weaker on the
way out of anesthesia than during entry. Shortly before the
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end of anesthesia (stage 3), phase synchronization becomes
very weak.

In conclusion, we have shown that the cardiac and res-
piratory systems possess dynamical properties and cou-
plings that can synchronize their oscillations in a hierarchy
of different phase-locked states. Kinetic phase transition
phenomena between these states are reminiscent of those
seen and analyzed in detail for physical systems such as
lasers [22]. During the course of anesthesia, the transi-
tions are found to occur in a reproducible sequence, sug-
gesting that the state of synchronization may provide a
potentially useful measure of the depth of anesthesia at
any moment. Given the similarities in cardiorespiratory
dynamics, in fh�fr , and in other characteristic frequency
ratios for humans and rats [3,4], it seems plausible that
similar results may also apply to humans.
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Abstract

The Karhunen–Lo�eve expansion is applied to scalar signals and the e�ect of window length
(tw), time lag (�) and embedding dimension (d) is analysed for periodic signals and for signals
modeled by the Lorenz equations. For � 6= k=2fi (fi are characteristic frequencies of the signal, k
is positive integer), we obtain 2m modes from an m-periodic signal. For a large set of parameters
a �nite number of modes was not obtained from the Lorenz system. It is further shown that, on
the time scale of a minute, the peripheral blood ow signal contains oscillatory modes that occur
in pairs thereby con�rming that the blood ow through the cardiovascular system is oscillatory.
Some of the di�culties of applying Karhunen–Lo�eve expansion to scalar signals are pointed out.
c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cardiovascular control mechanisms manifest themselves through rhythmic activities
[1,2] on several scales [3–7]. Analysis of such rhythms may, therefore, provide an
essential contribution to the understanding of physical and physiological properties of
cardiovascular system. On a time scale of minutes continuous wavelet transformation,
using the Morlet mother wavelet which enables good low-frequency resolution, has
revealed �ve characteristic peaks in the blood pressure, blood ow, respiration and
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heart-rate variability (HRV) signals [8]. The signals were simultaneously measured at
di�erent sites of the human body. Two peaks were located at heart-beat (∼1:0 Hz)
and respiratory frequencies (∼0:2 Hz), respectively, resulting from centrally mediated
regulation of blood distribution. The other three peaks were typically located around 0.1,
0.04 and 0:01 Hz [8]. They originate from peripheral, spatially distributed subsystems.
They are hypothesized to result from the myogenic, neurogenic and endothelial-related
regulation of the blood circulation through the cardiovascular system [9].
Both the peripheral and central regulatory processes are reected in the peripheral

blood ow signal, independently of the measurement site [8,10]. The blood ow signal
was shown to be highly deterministic [8,11] and to contain paired Lyapunov exponents
[12]. From signals analysed on time scales of minutes, either four pairs and one zero
exponent, or �ve pairs, were obtained, pointing to the almost conservative nature of the
blood distribution system on this time scale. Using di�erent kinds of data-processing
techniques, statistical di�erences were shown to exist between blood ow signals mea-
sured in healthy humans, sportsmen or subjects with various cardiovascular diseases
[8,10].
The next challenging problem in the process of reconstructing cardiovascular dynam-

ics is the extraction of parts of the blood ow signal which result from the activity
of a particular physiological process involved in the regulation of blood circulation.
A knowledge of the dynamics of each of the relevant modes provides a basis for
modeling of the underlying system. Such knowledge is also necessary in studying the
physiological origin and characteristics of processes involved in cardiovascular control,
as well as in clinical studies where di�erent modes are expected to be changed by
certain cardiovascular diseases, such as myocardial infarction, diabetes, etc. However,
at present it is not possible to obtain directly the time series of each of the processes
involved in blood circulation. The reasons are technical and systemic:
(1) No measurement techniques are available for recording the activity of the slower

periodic components, the myogenic, neurogenic and metabolic.
(2) All processes are mutually coupled and their activities interfere in all measured

signals.
An often used method for signal decomposition is known as principal component

analysis (PCA) [13] or Karhunen–Lo�eve expansion (KL) [14,15]. Generally, the KL
expansion is applied to analyse the spatio-temporal patterns emerging from complex
systems [16–18]. Multi dimensional data, such as EEG or MEG data in physiology,
are measured and spatial modes are calculated based on maximizing signal-projections
of those modes. The KL decomposition leads to orthogonal spatial and temporal modes
and gives a measure for the contribution of each mode to the signal. Modes with a
signal-contribution above a certain threshold are considered as relevant, those below
the threshold as irrelevant.
The peripheral blood ow signal is obtained from a Doppler shift of laser light

directed on the measured area [19]. The technique of blood ow measurement al-
lows for only a few simultaneously measured signals, while for the reconstruction of
its spatial dynamics one would need a greater number of signals. In addition, the
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cardiovascular system is complex system and the understanding of both its spatial and
temporal dynamics at once is di�cult. Therefore, at present, we restrict our interest to
the temporal characteristics of the blood ow signal. The procedure of decomposition
of the blood ow signal thus begins with its embedding in the phase space. Once the
signal is appropriately embedded, its KL decomposition is performed in the same way
as with multidimensional data.

2. Method

2.1. KL decomposition of a scalar signal

The Karhunen–Lo�eve decomposition of the d× w matrix A is given by

A =HV ; (1)

where H∈Rd×w, V∈Rw×w and V is a matrix of eigenvectors VTV = I.
The idea is to describe a given statistical ensemble with the minimum number of

modes. The number of modes equals the number of degrees of freedom. The matrix
A is composed so that the rows of the matrix represent time-dependent signals at
a speci�c place, and the columns represent spatially dependent signals at a speci�c
time (or vice versa). But for a purely temporal (or spatial) signal, the matrix must be
composed di�erently. We use the time-delay embedding method.
Let x(tn) be the measured signal. The time tn is discrete and is determined by the

sampling frequency tn = nts = n=fs, n=1; : : : ; N , where N is the number of samples in
the signal. The scalar time series x(tn) can be embedded in d-dimension phase space
x(tn)=[x(tn); x(tn+ �); : : : ; x(tn+(d−1)�)], where the time lag �=Tts. The embedding
procedure can also be repeated by choosing windows, w, within the signal, where
w6N . In what follows the window length is presented in continuous time, tw = wts.
The meaning of each of these parameters will be discussed in detail below. For a given
window we compose the matrix A

A =




x(t1) x(t2) · · · x(tw)
x(t1 + �) x(t2 + �) · · · x(tw + �)

...
...

...
x(t1 + (d− 1)�) x(t2 + (d− 1)�) · · · x(tw + (d− 1)�)


 :

Then, we compute the correlation matrix

C= ATA ; (2)

its eigenvalues �i and eigenvectors vi

Cvi = �ivi (3)

and sort the eigenvalues by size: �1¿�2¿ · · ·¿�d. At the same time we sort the
corresponding eigenvectors. Eigenvalues correspond to the energies of the modes. Since
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the modes are determined by maximizing � (the energy of a mode), the series converges
rapidly. This means that it gives rise to an optimal set of basis functions from all
possible sets. We calculate the matrix H from the matrix of eigenvectors

H = AVT ; (4)

where V is the matrix of vectors vi. The rows of matrix Âi

Âi = hivTi (5)

represent ith mode of the signal.
If we have p¡d dominant eigenvalues, most of the information is included in

Â =
p∑
i=1

hivTi ; (6)

where hi and vi are the columns of matrices H and V, respectively.
The �rst orthogonal function, i.e., mode of the KL method, is optimized in such

a way that it contains the largest proportion of the kinetic energy of the signal and
the successive modes contain decreasing proportions. By choosing a decomposition
of this form, the characteristics of a signal associated with the mean kinetic energy
can be represented by the fewest possible terms. This is in contrast to a Fourier type
decomposition where the orthogonal functions are predetermined and are not neces-
sarily reective of the signal; therefore many orthogonal functions must be utilized to
represent the signal [20].
In summary, the Karhunen–Lo�eve expansion results in a generalized coordinate sys-

tem de�ned by the eigenfunctions of the correlation matrix. It is optimized so that:
(1) The mean-square error between the signal and its KL representation is minimized

such that, for any �xed p:[
A −

p∑
i=1

hivTi

]2
→ min : (7)

(2) It has the minimum representation entropy property.
(3) The number of modes needed to describe the signal for a given error may be

minimized.
The optimality of KL method allows one to reduce the amount of information about

the signal, or process, down to a reasonable number of independent eigenfunctions,
which represent important characteristic features of the signal.

2.2. Embedding

The embedding is a transformation from one component of the state vector into a
phase space with more dimensions [21]. The space in which a given signal is trans-
formed is the embedding space and its dimension is the embedding dimension. We use
the method of delays by which the vector is constructed taking components of scalar
signal delayed in time. To construct the input matrix for the KL method one must
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choose the appropriate embedding dimension d, window length tw = wts and time lag
�= Tts.
It is more common to choose the embedding dimension than to choose the window

length [22]. Takens [23] and Mañ�e [24] showed that the embedding dimension should
be d¿(2m+1), where m is the system dimension, i.e., the number of system degrees of
freedom. Since we do not know it in advance, we must take d large enough, so that the
inequality is valid for the largest estimate of m. However, as we will see below,
the window length strongly inuences the results. Once the window length is �xed,
the embedding dimension can be determined such that the whole signal is covered.
The window length can also be determined by the length of the reconstructed signal.
A short window does not give enough information, whereas the longer the window the
more information we obtain. Therefore, the number of signi�cant eigenvalues grows.
When tw→∞ the method becomes discrete Fourier transformation [22]. Obviously,
some criteria must be met when choosing window length tw.
When time lag � is too small, all vector components obtained by embedding are

nearly equal and consequently strongly correlated, which means that successive modes
have monotonically distributed energies. The role of noise becomes dominant. If �
is too long, the vector components become spaced wide apart and thus statistically
highly independent. The vectors are displaced in phase space, resulting again in higher
dimension.

3. Applications to simulated data sets

To illustrate the role of each of the parameters we now present an analysis of
simulated signals. First, we analyse periodic and quasi-periodic signals, for two basic
reasons:
(1) For periodic signals the choice of the embedding parameters is straightforward,

and
(2) Their time and frequency domain characteristics resemble the characteristics of

a measured blood ow signal.
Then, we apply KL decomposition to signals obtained from the Lorenz equations.

3.1. Periodic signals

A simple sine signal, sampled at ts=0:01 s, has a period tp=1 s and lasts tobs =50 s
(Fig. 1 top). The window length was chosen to observe at least one period of the
oscillations, that is tw = 5 s (500ts). Results obtained at two time lags, � = 0:1 s and
�= 0:5 s, are presented in Fig. 1.
By decomposition of a sine signal one expects to obtain one mode only. However,

as shown in Fig. 1(a), at � = 0:1 s two modes are obtained. This can be attributed
to the embedding procedure. The embedding of a sine is two-dimensional, and the
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Fig. 1. On top the original sine signal with period tp = 1 s, underneath the �rst and the second mode at
(a) � = 0:1 s, and (b) � = 0:5 s; all other modes are equal to zero.

decomposition therefore results in two modes. The rows of the input matrix A are
sines, successively translated by 1

10 of a period and are not co-dependent. The matrix
of a mode Âi has rank 1, meaning that rows in this matrix are co-dependent. Hence,
they have the same and reverse phase (translated by �) respectively. Therefore, two
phase-shifted modes are necessary to describe a sine.
Fig. 1(b) shows only one mode as a result. For this example the time lag that equals

a multiplier of the half period, � = k=2tp, where k is positive integer, is chosen. In
this case the input matrix A also has rows that are co-dependent – with the same and
reverse phase. Consequently, only one mode is obtained.

3.2. Quasi-periodic signals

The same e�ect may be obtained for any m-periodic signal. For � 6= k=2fi (fi are
characteristic frequencies of the signal), 2m modes are obtained. Here, we face the
problem of achieving an appropriate embedding of a scalar signal. For a m-periodic
signal, with an incommensurate ratio of the characteristic frequencies, there will always
be some frequency fi for which � 6= k=2fi. Therefore, the strengths of each of the
two modes that result from a single period of the signal can not be unambiguously
determined.
The eigenvalue of each of the modes depends on the value of � chosen. The

normalized eigenvalues �i [25]

�i = �i

/
d∑
k=1

�k ; (8)

obtained at di�erent � for a sum of sine functions

x(t) =
5∑
i=1

1
fi
sin(2�fit) ; (9)
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Fig. 2. Normalized eigenvalues obtained from (9) at tw = 80 s, d = 100 and di�erent �. Small � results in
underestimation of the number of interacting modes (a). For � around the value of the minimal repetition
time in the quasi-periodic signal, �¿tmin=10, a constant number of interacting mode is obtained (b)–(f).

Fig. 3. (a–c) Normalized eigenvalues obtained from (9), at tw =80 s and d=100. An uniformly distributed
noise is added, with amplitude which is 30% of the maximal amplitude in (9). As a result of noise an extra
mode is obtained and its normalized eigenvalue increases at large time delay.

where the frequencies fi are 0.0123, 0.0349, 0.0951, 0.2943 and 1:1193 Hz, are pre-
sented in Fig. 2. Too small embedding time, compared to the repetition time of the
fastest oscillation, underestimates both the eigenvalues of most of the modes as well
as the number of modes involved (Fig. 2(a)). As the embedding time increases, the
number of relevant modes is unambiguously determined, however the eigenvalues of
each of them vary for di�erent � (Fig. 2(b)–(f)). If we further increase the embedding
time, i.e., �¿tmin (where tmin is the minimal repetition time in the quasi-periodic signal;
in (9) taken as 0:84 s), the estimated number of interacting modes remains constant.
However, at large embedding time the noise structures may become dominant. In

Fig. 3 eigenvalues obtained at large �, from (8) with 30% of uniform noise added, are
presented. As � increases over one half of the tmin a new mode is obtained. There is
another e�ect of the added noise. The normalized eigenvalues for non-relevant modes
increase, so that the distinction between relevant and non-relevant modes is no longer
sharp.
The value of embedding time is thus crucial for an appropriate estimation of the num-

ber of interacting modes. It should be expected to fall in a narrow window determined
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Fig. 4. The �rst 20 eigenvalues (top), the sum of two sine signals (2nd row) with f1 = 0:2943 Hz and
f2 =1:1193 Hz, (a) A1 =1=f1; A2 =1=f2 and (b) A1 =A2 =1 and the �rst four modes obtained at �=0:4 s,
tw = 20 s and d = 100. In each case, in the interests of clarity only 20 s are illustrated.

by the dynamics inherent in the signal. However, even for a simple quasi-periodic
signals the reconstructed modes do not necessarily resemble the original components.
Fig. 4 presents �rst four modes calculated for a sum of two sines with (a) di�erent
and (b) the same amplitudes. At di�erent amplitudes, with both sines contributing the
same energy, all components are reconstructed correctly, while sines originally with
the same amplitudes become modulated after the reconstruction.

3.3. Lorenz equations

The next example deals with data obtained from the Lorenz system

ẋ= a(x − y) ;
ẏ= cx − y − xz ;
ż =−bz + xy ; (10)

with a=10, b=8=3, c=28, x(0)=y(0)=z(0)=1. The equations were integrated using
the fourth-order Runge–Kutta method. The solutions were recorded at time intervals of
0:003 s with double precision.
At the chosen parameter values the system undergoes turbulent dynamics. The time

evolution is organized by two unstable foci and an intervening saddle point. Using the
Karhunen–Lo�eve decomposition and the embedding procedure, Broomhead and King
[22] and Mees et al. [25] have analysed data obtained from the Lorenz model, under
their conditions.
In performing the subsequent calculations, we followed the Broomhead–King

protocol, which was also repeated by Mees et al. [25]. Varying the embedding time
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Fig. 5. Normalized eigenvalues for data generated by the Lorenz equations. The window length is tw = 12 s
in each case. (a) The embedding time � is varied, 0.003, 0.012, 0.024 and 0:036 s from the bottom to the
top, and the embedding dimension is �xed, d = 25. (b) The embedding time is �xed, � = 0:003 s and the
embedding dimension is varied, 25, 50 and 100 from the bottom to the top.

and the embedding dimension at the same time, they repeated the calculations of
normalized eigenvalues. Using single precision, Broomhead and King obtained four
relevant modes, before arriving at what they term “the horizontal noise oor”. Mees
et al. [25] showed that this �nite value resulted from the small precision used. Increas-
ing the precision of the step of integration of the di�erential equation, they obtained
an increase in the corresponding number of relevant modes.
We performed two sets of numerical experiments. Firstly, we analysed the e�ect of

embedding time, at a constant embedding dimension (Fig. 5(a)). Secondly, at a �xed
embedding time we repeated the calculations by varying the embedding dimension
(Fig. 5(b)). In both sets of experiments, no constant number of relevant modes can
be detected. The number of modes di�ers for di�erent embedding times and embed-
ding dimensions. It is therefore clear that, using the KL method and the time-delay
embedding procedure, a turbulent ow in the Lorenz system cannot be decomposed
into a �nite number of modes. We infer that the results apply more generally.

4. Blood ow signal

Let us now see how much information we can extract from a real signal, namely
the signal of peripheral blood ow, using the KL method. It was measured with a
laser Doppler owmeter (Perimed, Sweden) [19] for tobs = 650 s, sampled with fs =
200 Hz and then resampled to fs = 40 Hz using a moving average. This was the only
preprocessing before KL was applied. The blood ow signal in the time domain and the
phase plane, its autocorrelation function and power spectrum are presented in Fig. 6.
The autocorrelation function reveals several periodic components and does not vanish
in time (Fig. 6(c) and (d)). The time averaged power spectrum, calculated using the
Morlet mother wavelet [10], in the frequency interval from 0.0095 to 2 Hz contains
�ve characteristic frequencies. A number of processes are involved in the regulation
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Fig. 6. The blood ow signal of a healthy subject in (a) the time domain and (b) the phase plane. The phase
plane was reconstructed using the embedding time �=0:2 s. The autocorrelation function was obtained by use
of a window tw (c) 160 s and (d) 320 s in length taken from the middle of the signal and translated forward
and backward along the whole signal. The power spectrum (e) was estimated by wavelet transformation
using the Morlet wavelet.

of peripheral blood ow and their characteristic frequencies vary in time and their
corresponding peaks are widened.
For the blood ow signal we need long window so that a relatively large amount of

information can be observed. Then we need to determine a value of �, such that we
can capture all modes of the signal.
The window length is determined by the slowest period of oscillations in the blood

ow. Because we are interested in the dynamics of one cycle of blood through the
cardiovascular system, window lengths that reliably exceed the average circulation time
of the blood (∼1 min), i.e., tw = 160 s and tw = 320 s, were chosen.
First, we analyse the signal at tw=160 s. The embedding time, �, is determined by the

shortest period of interest in the signal. The fastest oscillatory process in the peripheral
blood ow and in other signals obtained by non-invasive measurements of cardiovas-
cular functions [8] comes from the beating of the heart. Its frequency in a healthy
resting person is around 1 Hz; therefore we choose time lags � of 0:02; 0:1; 0:2; 0:3; 0:6
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Fig. 7. (a–f) The �rst 20 normalized eigenvalues calculated at d = 50 and di�erent time lags. The time
window was tw = 160 s and was repeatedly moved along the signal by 80 s, so that the calculations were
repeated six times.

and 1 s. To estimate an optimal embedding time the calculations were repeated at an
embedding dimension of d= 50.
The method was used similarly to the windowed Fourier transformation, where the

spectrum is the average of the spectra of single-time windows, which are sequentially
translated for half of the length of the window. At each set of parameters the eigenval-
ues and eigenvectors were calculated for several windows translated along the signal
for 80 s. Since the signal is 650 s long, we made six calculations.
Fig. 7 shows the �rst 20 normalized eigenvalues. The other normalized eigenvalues

are around 0 and are not shown. The �rst normalized eigenvalues decrease with in-
creasing time lag. At small time lags the successive vectors are strongly correlated,
so only the �rst few modes dominate. There are two knees at the �fth and the 10th
eigenvalue at � = 0:2 s, while the further values are negligible. A similar pattern can
be observed at � = 0:3 s. As the time lag increases the normalized eigenvalues of the
higher modes increase, because the correlation is weaker. Therefore, time lags around
�= 0:2 s were chosen for further calculations.
Next, we observed the e�ect of window length and embedding dimension on decom-

position at �=0:2 s and 0:24 s. Calculations were repeated at window lengths tw=160 s
and 320 s and embedding dimensions d=50 and 100. The normalized eigenvalues are
presented in Fig. 8. Comparing the results obtained at same window length tw =160 s
and di�erent embedding dimensions d=50 (Fig. 8(a) and (d)) and d=100 (Fig. 8(b)
and (e)), we see that by increasing embedding dimension the contribution of the �rst
eigenvalues decrease and the contribution of the higher modes increases. A tendency
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Fig. 8. The �rst 20 eigenvalues at � = 0:2 s (a)–(c) and � = 0:24 s (d)–(f). The window length and the
embedding dimension are varied. At each set of parameters the window was moved along the signal for
four times. At both embedding times the eigenvalues are comparable. For di�erent section of the signal their
di�erence is minimal at n = 320 s and d = 50 (c) and (d).

towards plateaux starting at �=10, with small di�erences between the values obtained
for di�erent windows, can be observed at tw=160 s and d=50, for both the time lags
�=0:2 s (Fig. 8(a)) and �=0:24 s (Fig. 8(d)). This tendency becomes less pronounced
at d=100 (Fig. 8(b) and (e)). If we also increase the window length, the variations in
normalized eigenvalues between one window and another become minimal, (Fig. 8(c)
and (f)).
With this knowledge of the e�ects of the embedding parameters, we make KL de-

composition of one segment of the signal. The decomposition at two di�erent sets
of parameters: (a) � = 0:24 s, tw = 160 s and d = 50 and (b) � = 0:24 s, tw = 320 s
and d = 100 is presented in Fig. 9. On the top are �rst 20 normalized eigenvalues
and below is a section of the blood ow signal followed by the �rst 10 modes. For
the sake of clarity, sections 80 s in length are plotted. In both cases several pairs of
modes, with equal frequency contents can be observed. The existence of modes in pairs
(see above) illustrates the oscillatory nature of the blood ow signal. For example, at
tw = 160 s (Fig. 9(a)), the main frequency of the ninth and the 10th mode coincides
with the respiratory frequency (around 0:3 Hz), which also occurs in the Fourier [11]
or wavelet transforms [8] of the blood ow.
Comparing Figs. 9(a) and (b), we see dramatic di�erences. At the decomposition

with larger dimension and window length, the slower modes dominate. Furthermore,
at larger window length greater number of modes becomes dominant. The appearance
of additional, slower, modes corresponds to the existence of periodic components with
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Fig. 9. The �rst 20 eigenvalues (top row), the segment of the blood ow signal (2nd row) and plots of the
�rst ten KL modes at (a) � = 0:24 s, tw = 160 s and d = 50 and (b) � = 0:24 s, tw = 320 s and d = 100.
The �rst ten modes represent (a) 84% and (b) 86% of the whole signal. At longer window and higher
embedding dimension slower modes dominate.

repetition times greater than 1 min observed in the wavelet transform of the blood
ow signal. This illustrates that the choice of embedding parameters, and the time
scale of observation in particular, inuences decomposition. On the other hand, with
an optimal set of parameters, we may expect to obtain modes that correspond to a
particular oscillatory process.

5. Summary

We have shown that the KL decomposition of a simple sine signal results in two
modes, when the time lag � is not a multiple of half of the period. For multiperiodic
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signals this condition will not in general be met, and so we will obtain m up to 2m
modes from an m-periodic signal.
Analytically, by the use of a simple example, Haken [26] has clearly shown that

the reconstruction of an attractor depends sensitively on the choice of time delay. The
decomposition itself also depends strongly on the choice of the embedding param-
eters: time lag �, window length tw and embedding dimension d. In analysing blood
ow signal, for example, increasing the window length and using a greater embedding
dimension causes the slower components to dominate.
Although some recommendations can be found in literature (see [27] and the ref-

erences therein) the parameter choice for reconstruction of a phase space from scalar
signals is in practice still empirical. The results presented illustrate the di�culty of
achieving optimal embedding of a simple numerically generated scalar signal. In case
of measured scalar signals the problem is even more pronounced. We have shown
that the reconstruction of measured scalar signal in the phase space is ambiguous.
Moreover, it requires a priori knowledge of the system producing the signal, which
is often incomplete. Consequently, a measured scalar signal cannot be unambiguously
decomposed into its principal components: further development of techniques for de�n-
ing criteria for optimal embedding is needed.
The decomposition of blood ow signal for a large set of embedding parameters

always resulted in pairs of oscillatory modes. The number of dominant modes depended
on chosen value of parameters, however in all cases a �nite number was obtained.
Therefore, we can reliably conclude from KL decomposition that the blood ow signal
contains oscillatory components, con�rming results already obtained using di�erent
signal analysis techniques [8–12].
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Abstract

We analyse phase and frequency synchronization in the human cardio-respiratory system. The
method for analysis of noisy nonstationary bivariate data is applied to simultaneously measured
cardiac and respiratory activity. Short epochs of phase and=or frequency locking between respira-
tory and cardiac rhythms are detected in healthy relaxed subjects (non-athletes). We reveal that
the strength of phase synchronization is inversely related to the extent of respiratory modulation
of the heart rate. c© 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The cardiac and respiratory systems are known to be coupled by several mechanisms
[1]. Due to their interaction, the heart rate increases during inspiration and decreases
during expiration. This respiratory modulation of heart rate, known as respiratory si-
nus arrhythmia (RSA), was observed as early as in 1733 [2]. In systems of coupled
oscillators another phenomenon may arise – the adjustment of their rhythms or
synchronization.
In the early studies of cardio-respiratory synchronization, Hildebrandt reported pre-

ferred time delays between the onset of inspiration and the preceding heartbeat,
and the integer number of heartbeats per respiratory cycle [3]. The preference of
integer ratios existed only in statistical terms. Raschke [4] investigated phase and
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frequency coordination in di�erent states of the system and reported strong phase co-
ordination between cardiovascular and respiratory subsystems during sleep, and dimin-
ished under conditions of strain or disease. Both, Hildebrandt and Raschke proposed
that synchronization, or frequency and phase coordination as they named it, establishes
a system of economical co-action and thus favor the functional economy of the
organism [3,4].
The notion of synchronization has long been restricted to periodic oscillators. Meth-

ods for detection of synchronization between such irregular and non-stationary oscilla-
tors as are the human heart and respiratory systems were proposed only recently (see
Ref. [5]).

2. Synchronization

Synchronization lacks a unique de�nition. In a wide sense, synchronization can be
treated as an appearance of some relation between the state vectors u(t) of two pro-
cesses due to their interaction [6]. A general synchronization is thus de�ned as the
presence of a relation between the states of interacting systems, u2(t) =F[u1(t)]. If
interacting systems are identical the states can coincide u1(t) = u2(t) and the synchro-
nization is complete. If the parameters of coupled systems slightly mismatch, the states
are close |u1(t)− u2(t)| ≈ 0, but remain di�erent.
In classical sense of periodic, self-sustained oscillators, synchronization is usually

de�ned as locking (entrainment) of the phases

’n;m = n�1 − m�2 = const ; (1)

where n and m are integers, �1,�2 are phases of the two oscillators and ’n;m is the
generalized phase di�erence.
Condition 1 is valid for quasi-periodic oscillators only. For more general forms of

nonlinear oscillators (e.g. relaxation oscillators), a weaker condition for phase locking

|n�1 − m�2 − �|¡ const ; (2)

was proposed [7]. In such cases, the m : n phase locking manifests as a variation of
’n;m around a horizontal plateau. The amplitudes of phase synchronized oscillations
can be quite di�erent and need not be related.
For periodic oscillators, the condition of phase locking (1) is equivalent to the notion

of frequency locking

nf1 = mf2 ; (3)

where f= 〈�̇〉=2� and brackets mean time averaging. If n periods of the �rst oscillator
have exactly the same duration as m periods of the second oscillator, the rhythms are
n : m entrained.
Synchronization of periodic oscillators thus means the appearance of phase locking

and adjustment of frequencies. If we consider synchronization in the presence of noise,
synchronization of chaotic systems, or synchronization of oscillators with modulated
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natural frequencies, phase and frequency locking may not be equivalent any more
[6,8]. One can distinguish between several forms of synchronization: frequency and
phase locking, phase locking without frequency locking and frequency locking without
phase locking [9].
For weak noise ’n;m uctuates in a random way around a constant value; the fre-

quencies are then nearly locked, i.e., the condition of frequency locking 3 is ful�lled
on average, n〈f1〉 = m〈f2〉. Strong noise can also cause phase slips. In such cases,
the question synchronous or not synchronous cannot be answered in a unique way,
but only treated in a statistical sense. Phase synchronization can be understood as an
appearance of a peak in the distribution of the cyclic relative phase

	n;m = ’n;m mod 2� ; (4)

and interpreted as the existence of a preferred stable value of phase di�erence between
the two oscillators.
In case of cardio-respiratory coupling, the noise originates not only from measure-

ments and external disturbances, but also from the fact that there are other subsystems
that take part in the cardiovascular control [10] and their inuence is considered as
noise in synchronization analysis.

2.1. Cardiorespiratory synchrogram

According to its de�nition (Eq. (1)), a m : n phase synchronization can be found by
plotting the generalized phase di�erence ’m;n=n�1−m�2 versus time and looking for
horizontal plateaus. For noisy systems the cyclic relative phase 	n;m is used instead
of ’n;m to avoid the impact of phase slips due to noise. There are two problems with
this approach: (i) integers m and n can only be obtained by trial and error and (ii)
if several synchronization regimes exist, the method cannot reveal them all nor the
transitions between them.
To overcome these problems, the cardiorespiratory synchrogram was introduced [5,9].

It is constructed by plotting the normalized relative phase of a heartbeat within m
respiratory cycles

 m(tk) =
1
2� (�r(tk)mod 2�m) ; (5)

where tk is the time of the kth heart beat and �r is the instantaneous phase of respi-
ration. �r is de�ned on the real line and it is observed stroboscopically at times tk , as
presented in Fig. 1. In a perfect n : m phase locking,  m(tk) attains exactly the same n
di�erent values within m adjacent respiratory cycles, and the synchrogram consists of n
horizontal strips. In the presence of noise, strips become broadened. By this technique
only one integer, m should be chosen by trial and several regimes can be identi�ed
within one plot.
The times of P peaks in the ECG signal, which correspond to the excitation of the

atria, were taken as the markers of heart beats. They were detected from the signal by
an automatic procedure and then also manually edited. To calculate the instantaneous
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Fig. 1. The derivation of cardiorespiratory synchrogram from the phase of respiration and times of heart
beats (P peaks in the ECG).

phase of respiration �r(t), either the Hilbert transform [6,11] or the method based on
marker events can be used [8]. By the second method, marker events that characterize
the cycle of the oscillator are �rst determined. A 2� increase in the phase is then
attributed to the interval between subsequent marker events. Within this interval, the
instantaneous phase is

�(t) = 2� t − tk
tk+1 − tk

+ 2�k ; tk6t ¡ tk+1 ; (6)

where tk is the time of kth marker event. De�ned in this way, the phase is a monotoni-
cally increasing piecewise-linear function of time de�ned on the real line. The maxima
of inspiration were taken for the marker events of the respiration oscillator. They were
detected automatically and again manually edited. Fig. 2 compares phases obtained by
both methods. The results are similar and the main source of di�erences is the linear
interpolation of phase in the case of the marker events method.

3. Cardiorespiratory synchronization in healthy subjects

The electric activity of the heart and respiration signals were measured on 32 healthy
subjects of di�erent age and sex. Subjects between 23 and 83 years of age were
included. None of them was intensively physically active. The measurement time was
20 min and the sampling frequency 400 Hz for the ECG and 40 Hz for the respiratory
signal.
Fig. 3 gives the instantaneous frequencies of heart and respiratory systems for an

800 s long segment of a signal measured from a young healthy male subject, we shall
refer to him as subject A. The instantaneous frequencies were obtained from marker
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Fig. 2. The detrended respiratory signal (a) and its instantaneous phase (b) retrieved by analytic signal
concept (solid line) and based on marker events (broken line). In the second case, the phase cannot be
determined for times before the �rst marker event.

Fig. 3. Instantaneous frequencies of the heart (fh) and respiratory (fr) activity and the corresponding his-
tograms of values for subject A.

events of both oscillators, i.e., the R peaks of the ECG signal (markers of the pumping
action of the heart) and the local maxima in respiration signal. Both frequencies are
time variable. The subject exhibited a relatively strong variability of heart rate which
oscillated between 0.8 and 1.2 Hz. The respiratory frequency also oscillated in time.
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Fig. 4. The cardiorespiratory synchrogram  1 and the instantaneous frequency ratio fh=fr for subject A.
Between 150 and 300 s a frequency synchronization appears and both phase and frequency synchronization
appear between 510 and 580 s.

A slight decline during the time of observation was noticeable. There is an irregular
breath around 350 s.
From the ECG and respiratory signals, the cardiorespiratory synchrogram was cal-

culated. The synchrogram for subject A obtained for m = 1 is given in Fig. 4. The
instantaneous frequency ratio fh=fr is plotted in Fig. 4 below. It was obtained by
counting the number of heart beats within each respiratory cycle and adding parts of
those heart beats that were in this respiratory cycle only partially.
During the �rst 150 s there was no apparent pattern in the synchrogram and the

frequency ratio varied around 6. Between 150 and 300 s we could see seven parallel
inclined curves. During this time, the frequency ratio was approximately constant, being
around 7. Parallel curves indicate frequency synchronization [9], however, the rhythms
were not phase locked. Between 300 and 510 s there was no obvious pattern in the
synchrogram, but we could see that the instantaneous frequency ratio became constant
for a few respiration periods around 450 s.
Between 510 and 580 s, seven horizontal lines appeared in the synchrogram, in-

dicating phase synchronization. During this time, the frequency ratio was also con-
stant, fh=fr = 7, although both frequencies varied in time. This is thus an example of
phase and frequency synchronization in the cardiorespiratory system. Within the whole
20 min of recordings, phase and frequency synchronization occurred simultaneously
only during 1 min in subject A.
After 580 s neither phase nor frequency synchronization was detected and the average

frequency ratio was increased.
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Fig. 5. Instantaneous frequencies of the heart (fh) and respiratory (fr) activity and the corresponding his-
tograms of values for subject B.

An even clearer example of frequency synchronization without phase synchronization
was observed for an elderly female subject (subject B). The instantaneous frequencies
of heart and respiration for a 500 s long segment of the signals recorded from this
subject are given in Fig. 5. The heart rate varied between 0.8 and 1 Hz which is less
than for subject A. The variability of the respiration frequency is comparable to subject
A, although the frequency itself is higher.
Fig. 6 presents the synchrogram (m = 1) and the instantaneous frequency ratio for

subject B. Between 150 and 350s �ve parallel curves appeared with sinelike variations
in time. Apparently, the generalized phase di�erence exhibited an oscillatory behaviour
during this time. It cannot be characterized as a phase locking as it is de�ned by
Eq. (2), although it reects some kind of coupling. Since the frequency ratio is almost
constant during this time (fh=fr = 5), we can speak about frequency locking.
We can see from these two examples that a variety of phenomena may arise from

the interaction between cardiac and respiratory systems. Some can be classi�ed using
the existing methods of uni- and bivariate data analysis, while others need to be further
investigated.

3.1. Characterization of synchronization

It is di�cult to �nd a measure that would characterize the strength of synchroniza-
tion in the system. Since in noisy systems, phase synchronization is understood in a
statistical sense as the existence of preferred values of generalized phase di�erence,
measures based on quantifying the distribution of phases were proposed. To reliably
detect synchronous epochs, Tass et al. [7] have proposed two indexes, one based on
Shannon entropy and the other based on conditional probability.
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Fig. 6. The cardiorespiratory synchrogram  1 and the instantaneous frequency ratio fh=fr for subject B.
Frequency synchronization without phase synchronization appears between 150 and 350 s.

We shall use the latter one, which is de�ned in the following way: Suppose we have
two phases, �1(tk) and �2(tk). We divide the interval of each phase into N bins and
calculate

rl(tk) =
1
Ml

∑
ei�2(tk ); l= 1; : : : ; N ; (7)

for all k such that �1(tk) belongs to bin l and Ml is the number of points in this bin.
If there is a complete mutual interdependence between the two phases, |rl(tk)| = 1,
whereas it is zero if there is no dependence at all. Finally, we calculate the average
over all bins

�=
1
N

N∑
l=1

|rl(tk)| (8)

which measures the conditional probability of �2 to have a certain value provided �1
is in a certain bin [7].
In application of the conditional probability index to the cardiorespiratory synchro-

gram, we can make use of the fact that by its de�nition the synchrogram gives us the
phase of respiration �r at times when the phase of heart rate is �h mod 2�n= 0. It is
therefore su�cient to use only one bin for the phase of the heart.
As we have seen in the synchrogram plots, transitions between di�erent synchronized

and non-synchronized states may appear within the time of observation, or frequency
synchronization may occur without phase synchronization. However, the index based
on conditional probability increases only in the presence of phase synchronization and
is not sensitive to frequency synchronization without phase synchronization.
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Fig. 7. The respiratory modulation of heart rate – the heart beats faster during inspiration and slower during
expiration.

3.2. Synchronization and modulation

In the systems of coupled nonlinear oscillators both synchronization and modulation
of rhythms may arise. The respiratory modulation of the heart rate is a well-known
phenomenon. As illustrated in Fig. 7, the heart rate increases during inspiration and
decreases during expiration. The degree of this variability of heart rate can be estimated
in di�erent ways [12]. The standard deviation of the RR intervals can be taken as a
simple measure of the heart rate variability. This measure, however, also includes the
heart rate variability caused by mechanisms other than respiration [10].
To investigate the relation between synchronization and modulation, we have com-

pared the conditional probability index for the �rst phase in the synchrogram, i.e.,
�( 1;1) averaged over the whole signal with the standard deviation of the RR intervals
for all 32 subjects. The results are presented in Fig. 8. We can see that subjects with
low heart rate variability have high conditional probability index, while subjects with
higher variability have lower conditional probability index. This negative correlation is
also statistically signi�cant (R=−0:37, p= 0:035).

4. Discussion

The modulation of heart rate by respiration is a well-known phenomenon, while
there are only few indications of true entrainment between the two rhythms. Most
studies have led to the conclusion that there is a comparatively weak coupling between
respiration and cardiac rhythms, and the resulting rhythms are generally not phase
locked [13]. Recently, evidences of temporary cardiorespiratory synchronization were
reported [5,9,14–18].
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Fig. 8. The correlation between the index based on conditional probability �( 1;1) and the standard deviation
of RR intervals for 32 subjects.

Sch�afer et al. found well-expressed synchronization in a group of young athletes
(high-performance swimmers) using the synchrogram technique [5,9,14,15]. They have
also noticed that subjects with the strongest synchronization had no remarkable RSA,
whereas subjects with the highest RSA exhibited no synchronization [5]. Therefore, they
have concluded that phase locking of respiratory and cardiac rhythms and modulation
are two competing aspects of cardiorespiratory interaction.
Our results con�rm the presence of episodes of synchronization in healthy relaxed

subjects. However, these episodes did not exceed 2 min within the 20 min of recording
for any of the subjects. Longer synchronization, such as reported by Sch�afer et al.
in athletes were not found in a more general population of non-athletes (performing
recreative physical activity only).
We have also studied the relation between the strength of phase synchronization and

the variability of heart rate which is mainly, although not completely, due to respira-
tory modulation of heart rate. A statistically signi�cant negative correlation was found
which is in agreement with the observations of Sch�afer et al. [5]. Nevertheless, we
must be aware of the limitations of this analysis. First, we have taken only phase syn-
chronization into account, although we have seen that other kinds of synchronization
may appear. Secondly, an average over the whole signal was taken for each subject
although phase synchronization appears only in parts of the signal. The phase synchro-
nization is understood in a statistical sense as the existence of preferred values of the
phase di�erence.
Based on the presented results, it is evident that couplings which exist between heart

and respiratory systems enable both modulation and synchronisation to occur. The two
interacting systems are however not isolated and they are subject to the inuence of
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other physiological systems contributing to cardiovascular control as well as to external
perturbations. Their impact may change the stability or even the existence of phase
locked solutions. Therefore, continual phase transitions between di�erent synchronized
and non-synchronized states are present in a normal healthy system.
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Physics of the human cardiovascular system

ANETA STEFANOVSKA and MAJA BRACÆICÆ

Contemporary measurement techniques permit the non-invasive observation of several

cardiovascular functions, both from the central and peripheral points of view. We show that,

within one cycle of blood through the cardiovascular system, the same dynamics

characterizes heart function as well as blood ¯ ow in the capillary bed where cells exchange

energy and matter. Analyses of several quite diŒerent signals derived from respiration,

cardiac function and blood ¯ ow, all reveal the existence of ® ve almost periodic frequency

components. This result is interpreted as evidence that cardiovascular dynamics is governed

by ® ve coupled oscillators. The couplings provide co-ordination among the physiological

processes involved, and are essential for e� cient cardiovascular function. Understanding the

dynamics of a system of ® ve coupled oscillators not only represents a theoretical challenge,

but also carries practical implications for diagnosis and for predicting the future behaviour

of this life giving system.

1. Basic role and structure

In the course of evolution, individual cells organized into

cellular systems of increasing complexity and, as animals

evolved, they further diŒerentiated into specialized tissues

and organs. At this level of organization cells were no

longer capable of individually sustaining autonomous life.

A collective system that provides and distributes oxygen

and nutrient materials to each cell and takes away the

products of their metabolism became essential, and also

evolved. It is the cardiovascular system, a closed circuit of

vessels, that enables the life of each individual cell in the

human organism, as well as in all mammals.

To enable it to take care of the nutritional and

immunological needs of individual cells, the blood is kept

in continuous motion from the left heart, via the aorta,

arteries, arterioles, capillaries, venules, veins, vena cava, to

the right heart, through the pulmonary artery to the lungs,

and ® nally, through the pulmonary vein, back to the left

heart (® gure 1). The total volume of blood (4± 6 l, or 7± 8%

of the body weight) circulates along this path in one

minute, on average in a relaxed, healthy subject in repose

[1,2]. With 60 beats per minute the heart of a man outputs

5.5 litres on average in a minute. The process of respiration,

by which the blood exchanges gases with the atmosphere, is

also involved in the regulation of pressure and ¯ ow, and it

dominates in the venous ¯ ow. Along the vessels the ¯ ow is

also regulated by myogenic and neurogenic processes [1,2].

Both are involved in vasomotionÐ continuous oscillatory

movement of the vessels. The myogenic process results

from the continuous contraction and relaxation of smooth

muscle in the vessels’ walls. This process aŒects the radial

component of the vessel movement and is based on the

concentration diŒerence of ions inside and outside the

muscle membrane. The neurogenic process is controlled by

the autonomous nervous system. Having its origin in some

centres in the brainstem that are connected to other parts of

the central nervous system, and sensors throughout the

whole network of vessels, it provides synchronization of the

function of the entire system. It mainly aŒects the

longitudinal component of the vessels’ movements.

The place where the cells of the human body have direct

access to the blood is named the capillary bed (® gure 2). It

serves both transport and exchange functions. The capillary

bed is the network of capillaries, feeding arteriole and

draining venule, that act collectively as a functional

module. The average length of a capillary is about 200±

250 ¹m, and its diameter ranges from 8 ¹m to 10 ¹m

depending on the site, but for the most part is comparable

with or even smaller than the diameter of the red blood

cells. The ¯ ow of blood in vessels whose diameters are

comparable with that of red blood cells is termed

microcirculation [3]. While some of the blood passes

directly to the venules, thus making circulation continuous,

some stays in the capillaries closed by pre-capillary
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sphincters. The latter are rings of smooth muscles that

rhythmically switch between the open and closed condition.

The exchange of matter and energy between the blood

and the tissues occurs across the capillary wall, so that the

system is thermodynamically open. The capillary bed can

be conceived of as two concentric tubular barriersÐ an

inner tube, a layer of endothelial cells, and an outer tube,

the basement membrane. The latter is directly continuous

with the tissue ground substance [4]. The endothelial cells

are interdigitated to form the interior ® brillar layer, some

500Ð 600 A thick. The two layers, although continuous in

their structure [5], are capable of selection among the

substances that await to enter the intracellular space. From

there, they become involved in all forms of tissue

metabolism, both physical and chemical. These processes

occur on time scales longer than one minute, however, and

will not be considered in the analysis presented below.

In what follows, we shall summarize current under-

standing of the system responsible for the circulation of the

blood and for controlling the concentrations of dissolved

gases and nutrients within itÐ the cardiovascular systemÐ

restricting our attention to those processes that occur

within one cycle of blood through the system. The rhythmic

metabolic process that in¯ uences blood transport by

facilitating exchange across the capillary wall is thus the

slowest dynamic process that will be considered. We will

® nd that physics has a major role to play in accounting for

the operation of this wonderful self-regulating biological

mechanism. We will also see that, contrary to popular

perception, the heart of a healthy person at rest does not

beat at a constant rate. Indeed, unevenness of the heart

rhythm seems to be absolutely essential to physical well-

being.

2. Background

From the earliest times, blood has been recognized as the

life-giving ¯ uid. Until the beginning of the seventeenth

century, however, it had been believed that the blood was

prepared in the liver and then moved through veins into

organs, where it was consumed. From veins it came to the

right heart where it divided into two streams, one supplying

the lungs and the other, through ìnterseptal pores’ , going

to the left heart. This was seen as a place where the blood

mixed with the air (pneuma), became heated and then

passed to the aorta. The ® rst criticism to this view, which

was formulated by Galen of Pergamum in the second

century, was proposed by Ibn el-Na® s not earlier than in

thirteenth-century. He proposed that the blood from the

right heart continued to the lungs, where spread in the

pulmonary substance to mix with the air and then returned

to the left heart. The role of valves in the heart was ® rst

described by Andrea Casalpino in 1571, who then

introduced the term circulatio [6].

It is to William Harvey that we owe the conception and

proof of the idea that blood does indeed circulate. He was

able to show that the valves in the heart are so arranged as

to allow the passage of blood in only one direction.

Further, by watching the motion of the heart in living

animals he concluded that in the phase of emptying the

ventricles, known as systole, the blood is expelled to the

Figure 1. Blood circulates through the cardiovascular system, a
closed system of vessels. In one minute on average the whole
volume of blood passes through the heart and the lungs, and is
then distributed to the diŒerent parts of the body according to
their individual needs. Oxygenated blood is portrayed as red, de-
oxygenated as blue. Modi® ed from [2], with permission.

Figure 2. A typical capillary bed, where the cells of human
body have direct access to the blood. An exchange of energy and
matter occurs along the capillary walls so that the cardiovascular
system is thermodynamically open. Modi® ed from [2], with
permission.
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lungs via the pulmonary artery and to the rest of the body

via the aorta. In the phase when the atria are ® lling, known

as diastole, he observed that the blood enters the heart

through the vena cava and the pulmonary vein (® gure 1).

He calculated that if only a drachma (3.55 ´ 10
Ð 6 m3) of

blood were expelled at each beat, in half an hour the heart

would use up all the blood in the body, thus completely

emptying the veins and distending the arteries. After more

than two decades of systematic work, Harvey formulated

his results in 1628, when he concluded that the circulation

of the blood is t̀he sole and only end of the motion and

contraction of the heart’ [6]. The fact that blood moves in a

circle, entering the veins from arteries, was supported by

Marcello Malpighi, who in 1661, using a microscope,

discovered the capillaries [7].

Harvey’ s discovery of blood circulation opened the doors

to modern physiology, but at least two centuries were to

elapse before science had developed su� ciently to pass

through them. Even today, the fact that the lungs and the

heart are the only organs through which the entire amount

of blood passes on average in each cycle is often

overlooked. Their interplay in maintaining the ¯ ow and

pressure levels still needs to be clari® ed. The blood ¯ ow

through those organs is usually treated separately, mainly

analysing ¯ ow in the heart and/or veins (see [8] and the

references therein), and gas exchange in the lungs.

In the following subsections we will trace the develop-

ment of our understanding of physics of blood circulation,

grounded on Harvey’ s observations. First, we will consider

the mechanical function of the heart and the ¯ ow of blood

through vessels. Then, secondly, we will discuss the

regulatory mechanisms that are involved in maintaining

rhythmic ¯ ow of blood through the cardiovascular system.

2.1. Mechanics of the blood ¯ ow

The study of mechanics of the blood ¯ ow is marked by the

work of Jean Poiseuille. After completing his doctoral

research on The force of the aortic heart in 1828 [9], he

turned his attention to circulation through small vessels. To

be able to control all parameters involved, he built a model

device where he studied the liquid ¯ ow in small diameter

glass capillaries. Poiseuille set out to ® nd a functional

relationship among four variables: the volumetric e‚ ux

rate of distilled water from a tube Q, the driving pressure

diŒerential P, the tube length L, and the tube diameter D.

The diameter of his glass tubes ranged from 15 ¹m to

600 ¹m, however larger than the size of human capillaries.

He varied the other parameters, too, and by careful

measurements established the relation among the above

parameters as

Q 5
K ¢ ¢ PD4

L
, (1)

where K ¢ ¢ is a function of temperature and the type of

liquid ¯ owing. Later, Eduard Hagenbach solved the

problem of Poiseuille ¯ ow by application of the Navier±

Stokes equations. He showed that K ¢ ¢ 5 p /128¹, where ¹ is

the viscosity of the ¯ uid. Although viscosity was de® ned by

Navier in 1823, Poiseuille himself did not use this term, so

that the present-day form of the Poiseuille’ s relation was

completed by Hagenbach who, in 1860, proposed calling it

Poiseuille’ s law. The value of ¹ derived from K ¢ ¢ , which

Poiseuille obtained, agrees with currently accepted values

to within 0.1% , which illustrates the remarkable precision

of his experiments. His quest for the utmost possible

precision was motivated in part by the fact that accepted

opinion, including that of the authorities of his time,

Thomas Young and Claude Navier, held that Q is

approximately proportional to D3.

At about the same time a German hydraulic engineer,

Gotthilf Hagen, published in 1839 a paper on the ¯ ow of

water in cylindrical tubes. Although it is general opinion

that the careful and precise experiments of Poiseuille were

fully convincing, the law governing ¯ uid ¯ ow through a

tube is also named the Hagen± Poiseuille law.

It was George Stokes himself who, in 1845, solved the

problem of Poiseuille ¯ ow as an application of the Navier±

Stokes equations, but he did not publish his results because

he believed that they con¯ icted with experiment: he was

evidently unaware of Poiseuille’ s work.

The Navier± Stokes equations are used universally today

to describe ¯ uid ¯ ow, including velocity pro® les in large

arteries. The equations are derived from the basic principles

of conservation of mass and momentum. The conservation

of mass is expressed by the continuity equation

 q

 t
1 Ñ . [ q ] 5 0 , (2)

where q 5 q ( , t) is the density of the ¯ uid, t is the time,

5 ( , t) the velocity vector, and Ñ is the gradient vector

operator. For a scalar function q , Ñ . q = grad q , and for

the vector , Ñ . = div .

Conservation of momentum leads to the equation of

motion

q


 t
1 [ . Ñ ] 5 Ñ . r 1 q , (3)

where r is a stress tensor and 5 ( , t) denotes the body

force per unit mass. For a ¯ uid, the stress tensor is

r 5 2 p 1 with 5 unit tensor. (4)

Here, 2 p represents an isotropic part, having the same

form as the stress tensor for a ¯ uid at rest with a

hydrostatic pressure p, and tensor represents the non-

isotropic part, caused by the ¯ uid motion. However, to

deduce the dependence of on the local velocity gradients,

it is assumed that dij is a linear function of the various
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components of the velocity gradients and that the ¯ uid is

isotropic, called a Newtonian ¯ uid. Under the above

assumptions is expressed as

5 2¹ 2
1
3

[ Ñ . ] with e ij 5
1
2

 vi

 xj
1

 vj

 xi
, (5)

where is the symmetrical part of the velocity gradient

tensor, known as the rate of strain tensor, and ¹ is the ¯ uid

viscosity depending on the temperature. By substituting (5)

into (3), the expression for the velocity is obtained

q


 t
1 . Ñ 5 q 2 Ñ p 1 Ñ . 2¹ 2

1
3

[ Ñ . ] .

(6)

Equations (2) and (6) are known as the Navier± Stokes

equations for ¯ uid motion. For the case where temperature

diŒerences are small enough for the temperature to be

taken as uniform over the ¯ uid, and for a ¯ uid that is

incompressible, they reduce to

Ñ . 5 0 , (7)

q


 t
1 . Ñ 5 q 2 Ñ p 1 ¹ Ñ 2 . (8)

A complete analytic solution of the Navier± Stokes equa-

tions is in general extremely di� cult. Although for most

regimes of interest numerical solutions may be obtained,

® nding them is still a matter of intensive research for many

types of ¯ uid. Readers interested in a complete derivation

and numerical solution for velocity pro® les in large arteries

are referred to [10] and the references therein. Based on the

Navier± Stokes equations, both laminar and turbulent types

of ¯ ow are studied. Laminar arises in linear regimes, and

turbulent ¯ ow results from nonlinear characteristics of the

system. Linear ¯ ow usually has a Poiseuille velocity pro® le,

while a variety of velocity pro® les can be obtained in the

case of turbulence. Turbulent ¯ ow is observed mainly in

large arteries, where pressure gradients and velocities are

high, whereas laminar ¯ ow is characteristic for most of the

small vessels [10,11].

The boundary conditions for the Navier± Stokes equa-

tions are complicated, and the initial conditions are di� cult

to de® ne. A simpli® ed description of the cardiovascular

system as a whole might serve to obtain the values of initial

conditions. The equations (7) and (8) are obtained on the

assumptions that the ¯ uid is incompressible, Newtonian

and isothermalÐ which might seem reasonable approxima-

tions, but the vessels themselves undergo dynamic changes

in geometry which are not taken into account.

The mechanical approach is based on the assumption

that the system is conservative and that it can be

characterized by the equations of mass, momentum and

energy conservation. The physics of the system is studied

locally, with separate parts of the system being considered

in isolation. The whole approach needs a very detailed prior

understanding of the system in order to be able to provide a

good description of the observed behaviour. But the more

precisely we try to understand the mechanics of the system,

the more detail we need, and the less we are able to consider

its global characteristics and to understand the mechanisms

involved in one cycle of the blood through the system.

2.2. Regulation of the heart function

2.2.1. Autorhythmicity of the heart. As already indicated,

the heart function consists of two phases: systole, the period

of the cycle when the heart is emptying; and diastole, the

period when it is ® lling. In order to function e� ciently, the

cardiac pumping action must proceed in a coordinated

fashion. The coordination is maintained by excitatory

signals generated within the heart itself. It was noticed as

early as 1777 that arteries contracted and dilated in phase

with heart action, but it was not until 1831 that Ernst Weber

showed that these were controlled by the same type of nerves

[6]. In 1845 Alfred and Ernst Weber obtained evidence that

the vagus nerve can inhibit heart action, which had already

been suggested by Alfred Volkmann in 1837. Shortly

afterwards, the other type of nerves that innervate the

heartÐ the sympathetic nervesÐ were described by Claud

Bernard. When they are severed, the muscles of the heart and

vessels become less stiŒ, causing the vessels to dilate.

External stimuli of sympathetic nerves provoke muscle

stiŒening, or contraction. Those two states are known in

physiology as vasodilatation and vasoconstriction, while the

continuous constriction and dilation, by which the blood is

pushed forward, is known as vasomotion.

Today it is known that the cardiac centres in the pons

and in the medulla oblongata, which are both part of the

brainstem ² , exert a direct in¯ uence on the activity of the

heart, by way of sympathetic and parasympathetic nerves.

The action of the heart is therefore primarily controlled by

the autonomous nervous system.

The rhythmic pulsation of the heart is however main-

tained by excitatory signals ³ generated within the heart

Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð

² The brainstem consists of the medulla oblongata, pons and midbrain.
The medulla oblongata is an enlarged continuation of the spinal cord
extending up into the pons. All nerve fibres linking the brain to the spinal

cord, ascending and descending, as well as nerve fibres linking cerebrum
to cerebellum pass through the brainstem, thus making it a crossroads of
the nerve pathways. Centres of the autonomic nervous system that provide

basic control mechanisms for blood pressure, heart and respiratory
function are also located in the brainstem.

³ Nerve excitation is the state of automatic, progressive breakdown of its

membrane charge, producing a propagating potential, the action
potential, along the nerve. Cells in which an action potential can be
elicited are called excitable. Excitability is a typical property of nerve and

muscle cells.
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itself. Under suitable conditions a heart removed from the

body will continue to beat at a constant frequency [2]. This

occurs through the action of specialized cells of the

pacemaker and conducting system (® gure 3). The sinoatrial

node is the primary pacemaker of the heart, having the

highest discharge rate, i.e. the frequency of generating an

action potential, based on ion concentration diŒerences

across the membrane. The mechanism by which the action

potential is generated and propagated through the tissue is

however beyond the scope of this article. Readers interested

in it are referred to [2,7].

The parasympathetic nerves branch oŒfrom the vagus

nerves on both sides of the cervical region in the spinal

cord. The right branch of the vagus nerve goes to the right

atrium, where it is concentrated at the sinoatrial node (SA),

while the left branch goes to the atrioventricular node

(® gure 3). Accordingly, stimulation of the right vagus

predominantly eŒects the heart rate. Externally applied

electrical stimuli to the cardiac vagi does slow the heart. It

may reduce the cardiac output, or even stop the heart, but

these eŒects are due to vagi slowing or stopping the

generation of the stimuli by the SA node. When the body is

at rest, the SA node drives the heart at a rate of about 60

impulses/min. The left vagus eŒects the velocity of

transmission of electrical impulses from atria to ventricles

and thus the time between the atrial and ventricular

contraction. In this way the left vagus also in¯ uences the

heart rate. There is only sparse parasympathetic innerva-

tion of ventricles. Its role there is indirect and serves to

inhibit the sympathetic action.

The sympathetic nerves come from the upper thoracic

segments of the spinal cord. They are uniformly distributed

to all parts of the heart. Their activity increases the heart

rate by increasing the rhythmicity of the SA node and,

more importantly, they increase the strength and speed of

contraction of muscles in both atria and ventricles. In

biological emergencies, such as ¯ ight, fright or ® ght, an

increase in sympathetic activity is of vital importance to the

organism in securing maximal mobilization of the pumping

mechanisms of the heart [1].

2.2.2. Electrical and mechanical action of the heart. After

the electrical nature of the excitation of smooth muscles in

the heart and the vessels was appreciated, attempts were

initiated to record the corresponding electrical signals.

Using a galvanometer, Carlo Matteucci showed in 1838

that the heart muscle generated a measurable electric

charge. In 1903 William Einthoven modi® ed the string

galvanometer to record continuously the electrical activity

of the heart, creating what was eŒectively an early

electrocardiograph (ECG). Both the characteristics of the

electrical activity in the heart, and their mechanisms, have

been intensively studied since then and standards have been

established to make the ECG universally useful [2].

The electrical potentials can be detected by electrodes

placed at various points of the body. The basic bipolar limb

leads, named I, II and III, as proposed by Einthoven, are

based on the triangle formed by the shoulders and the

crotch. The electrical signal is obtained as a diŒerence of

potentials sensed by plus and minus electrode with respect

to the third electrode, giving a ground potential. A typical

signal obtained by electrodes on both shoulders and one

below the heart, from one of the so-called precardial leads

[2], is presented in ® gure 4. Each portion of the ECG

represents electrical activity in a particular part of the

heart, and the speci® c peaks were denoted as P-Q-R-S-T,

the R-peak being the maximal value in most of the

electrode con® gurations.

The standard analysis considers the time interval

between the characteristic peaks, obtained after averaging

over some number of beats. By convention, P and T are

named waves, and the distance between two waves is called

a segment, while an interval comprises both waves and

segments. From the ECG curve an atrial and a ventricular

part can be distinguished, as well as the states when valves

are open or closed. During the P wave the excitation

spreads over both atria, and within the PQ segment the

atria as a whole continue to be excited. The QRS complex

corresponds to the excitation of both ventricles, and the T

wave re¯ ects recovery from the excitation of the ventricles.

The states of mitral valve, the valve between left

atrium and ventricle, and the aortic valve, the valve

between left ventricle and aorta, are presented in ® gure

4. The mitral valve closes at the R-peak and at the end

of QRS complex the aortic valve opens. The blood is

then ejected into the aorta. This phase is named systole.

Figure 3. The pacemaker and conducting system of the heart as
seen in the frontal section. Modi® ed from [2], with permission.
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At the end of the T wave the aortic valve closes and

shortly after the mitral valve opens to allow the passage

of blood from ventricles to atria. This is the phase of

® lling or diastole. Similar phases occur also in the right

heart with the ejection period being initiated slightly

earlier and the systole slightly later. These time

diŒerences are relatively small (of the order of 10±

30 ms) and have no particularly eŒect on the dynamics

of blood ¯ ow. The corresponding valves in the right

heart are named tricuspid and pulmonary valves. The

tricuspid and mitral valves are also named atrioventri-

cular (AV) valves, while the aortic and pulmonary

valves are named arterial valves.

The excitatory events described above govern the

mechanical activity of the heart by causing the contraction

of muscle cells in the heart, known as myocardial cells.

Opening and closing of the valves is brought about by

pressure changes in the adjacent heart cavities or vessels.

The motion of the valves in turn aŒects the mode of

contraction of the myocardium. When the intraventricular

pressure exceeds the arterial diastolic pressure of ~ 10 kPa

in the aorta and ~ 1.2 kPa in the pulmonary artery, both

arterial valves open and blood begins to be expelled. The

intraventricular pressure continues to rise, until it reaches

its maximum of 16kPa in the left and 2.7kPa in the right

ventricle. Towards the end of systole it falls again. The ¯ ow

of blood through the system is driven by the pressure

diŒerence. Its value depends on the side of the system,

being higher in the arterial side, and varies with respect to

the size of the vessels. On the capillary side it is modulated

by both the central and the peripheral mechanisms. In

® gure 4 one cycle of the electrical activity of the heart

together with the arterial pressure and the blood ¯ ow

through a capillary bed in the skin of a human hand is

presented. The electrical activity results in a pressure wave

that drives the ¯ ow of blood through the system.

2.2.3. Heart rate variability. Thus far, we have discussed

the mechanism of a single heart cycle. The time between

two successive R-peaks, i.e. the period of a complete heart

cycle, is however not constant, but rather varies in time. In

their pioneering work Hyndman et al. [12], Sayers [13] and

Chess et al. [14], in the 1970s, focused attention on the

existence of physiological rhythms imbedded in the beat-to-

beat heart rate signal.

By plotting the inverse value of the time between two

successive R-peaks, the instantaneous heart rate (IHR), as

a function of time, a new time series is generated (® gure 5).

Figure 4. A typical signal from the electric activity of the heart
together with the corresponding states of mitral and aortic valves
(top), the blood pressure (middle) and the peripheral blood ¯ ow
(bottom) during one pumping cycle of the heart.

Figure 5. Steps in derivation of the heart rate variability (HRV)
signal.
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However, the signal that we derive is discrete and not

continuous and has a variable sampling time (® gure 5).

After interpolation the signal named heart rate variability

(HRV) is obtained. Numerous methods of interpolation

have been proposed, but they all in¯ uence spectral

components in various ways. The analyses that we present

below are obtained by linear interpolation between two

IHR values (® gure 5). The signal is than re-sampled with a

constant sampling time of 0.1 s.

Among all physiological signals, HRV is the one least

in¯ uenced by movement artefacts, or by instrumental noise.

It has also an additional advantage. While the measure-

ments of most physiological signals are inevitably in¯ u-

enced by interference from other physiological processes,

the value of the R-peak corresponds to the pumping cycle

of the heart and determines precisely a distinct moment of

the heart beat.

Akselrod et al. [15] were the ® rst to introduce spectral

analysis of the HRV signal to evaluate quantitatively the

beat-to-beat cardiovascular control. Since then, HRV has

been analysed extensively using the Fourier transform of

the signal itself, or its autoregressive model, i.e. non-

parametric and parametric methods (see [16] and the

references therein). The linear frequency analysis is based

on the assumption that it is possible to decompose a time

series into the ® nite number of periodic sinusoidal functions

with diŒerent frequencies and phases. The Fourier spec-

trum of the ECG, recorded for 20 min on a healthy, resting

subject is presented in ® gure 6a.

When the shape of the original time-series is non-

sinusoidal, higher harmonic components of the fundamen-

tal frequency are necessary to reconstruct the function.

Thus the spectrum of an ECG consists of a fundamental

frequency of ~ 1 Hz (60 beats per minute), and components

at higher integer multiples of this basic frequency, i.e. at

2 Hz, 3 Hz, etc, as can be seen in ® gure 6a. As already

mentioned, the heart rate in a healthy subject varies, which

is why its basic frequency is not sharp. The nature of its

variability can be studied by analysing the HRV signal. Its

Fourier spectrum is presented in ® gure 6 b. Because of the

discrete nature of the events the basic sampling rate of the

HRV is inherently the heart rate itself, and consequently

this provides maximum frequency in the HRV spectrum.

The highest frequency in the spectrum, f max is determined

by the sampling frequency, f s 5 1/ts, and the relation

f max 5 f s /2. For example, if the heart rate is ~ 1 Hz, then

f max in the HRV spectrum is ~ 0.5 Hz.

The peaks in the HRV signal correspond to the periodic

processes that modify the basic heart frequency. It has

already been recognized that the information contained in

the HRV signal is of great clinical and physiological

importance. DiŒerent diseases were shown to manifest

themselves in a speci® c way in the HRV spectrum.

Recently, standards of measurement, physiological inter-

pretation and clinical use of the HRV were proposed [17]. It

has been suggested that a sampling rate between 250 and

500 Hz is optimal to record the shape of the ECG curve and

de® ne the R-peak. The importance of the time of

observation is also pointed out. The recording is recom-

mended to last at least 10 times the period of the lower-

frequency bound of the investigated component, but should

not be substantially extended beyond this in order to ensure

the stationarity of the signal. Two diŒerent types of

measurements were suggested: short-term (5 min) and

long-term (24 h) recordings. Three main frequency domains

are distinguished in the short-time recordings: (i) high

frequency (HF) range, 0.15± 0.4 Hz, (ii) low frequency (LF)

range, 0.04± 0.15 Hz, and (iii) very low frequency (VLF)

range, £ 0.04 Hz. From the long-term recordings the VLF

range is de® ned from 0.003 to 0.04 Hz, and for the

Figure 6. Fourier (top) and wavelet (bottom) transforms of (a) the ECG and (b) HRV signals. The Fourier spectra are obtained as an
average of spectra calculated for 200 s time segments, shifted along the signal for 100 s. The wavelet transform is also averaged in time,
obtained with (a) f0 = 3 and (b) f0 = 1.
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frequencies £ 0.003 Hz an ultra low range (ULF) was

de® ned. These frequency domains in the HRV spectrum,

calculated using Fourier transform, are presented in the top

section of ® gure 6b.

The physiological origin of the periodic processes

involved in the modulation of the heart rate is not well

understood. It has been proposed that vagal activity is the

major contributor to the HF component, while disagree-

ment exists in respect to the LF component. It is considered

either as a marker of sympathetic modulation or, alter-

natively, that it includes both sympathetic and vagal

in¯ uence. The physiological interpretation of the lower-

frequency components warrants further elucidation (see

[17] and the references therein). This interpretation is

however based on considering only the electrical activity of

the heart muscles and is focused on understanding the

nerve function that is involved in the observed ¯ uctuations

of the heart rate.

As early as 1733, Hales observed that changes in blood

pressure and heart rate were related in a regular manner to

the respiratory pattern in the horse [18]. Ludwig’ s invention

of the kymograph allowed his observation in 1847 that the

dog heart rate increased on inspiration and decreased on

expiration [19]. This phenomenon is known as `respiratory

sinus arrhythmia’ and is interpreted as a dynamic response

of the heart achieved by central nervous modulation of the

input to the sino-atrial node. Here, we would like to stress

the importance of distinguishing the quantities that are

regulated, which are blood pressure and ¯ ow, as well as a

vessel’ s resistance and conductance, and the way that

information about their values is transmitted. It is the

nervous system that conveys the information about these

quantities, derived from mechanical and chemical sensors at

various points within the cardiovascular system. In general,

the function of all nerve cells in the body is to receive

information, to carry it to other parts of the system, to

compare it to other information, and ® nally to control the

function of other cells. That is why they operate on smaller

time scales, than for example the scale on which the blood is

distributed through the body [20].

In attempting to understand the function of physio-

logical systems, one of the greatest di� culties is to

recognize the distinction between cause and eŒect. The

functioning of the cardiovascular system results from an

interplay of a variety of mechanisms that serve to keep

the values of pressure and ¯ ow within certain limits.

Therefore, in the pages that follow we will present our

understanding of the physics of the cardiovascular

system on the assumption that the quantities character-

izing its function are mechanical, while the electrical

activity of the nerves serves for communication within

the system. Because an understanding of the physiolo-

gical origin of the periodic events that contribute to

heart rate variability is of central importance for a

physical as well as a mathematical representation of the

system, we will turn once again to this question.

3. Frequency analysis of cardiovascular signals

The heart rate variability signal allows us to observe the

function of the heart in time. By extracting the information

that it contains, the basic principles of heart function may

be studied under normal conditions as well as in perturbed

states. However, we cannot apply classical perturbation

theory directly, but rather must observe its function after

reversible perturbations, such as physical exercises and

application of vasodilator substances, or after irreversible

perturbations resulting from diseases.

The HRV signal allows for observations of the function

of the cardiovascular system from a central viewpoint (at

the heart itself). Later in this section we shall introduce

another signal derived from ¯ ow through the vascular bed,

namely the peripheral blood ¯ ow. This signal provides a

peripheral viewÐ from one of the places where blood

exchanges substances with the cellsÐ of the dynamics of the

cardiovascular system.

The time of observation is of crucial importance in

determining the type and amount of information that can

be extracted from a signal. As we have already stated, our

goal is to understand the dynamics of one cycle of the

blood through the cardiovascular system. As it takes

approximately one minute, and its dynamics is not strictly

periodic, we have chosen the observation time to be 20 min.

3.1. Methods of analysis

The existence of rhythmic activity in the HRV signal has

already been pointed out, so we shall start with an analysis

of the cardiovascular system in the frequency domain. Let

us ® rst discuss the Fourier transform in more detail.

3.1.1. Fourier transform. A physical signal (with ® nite

energy) may be presented in either time or frequency

domains. The Fourier transform

G(f ) 5
¥

2 ¥
g(t) exp ( 2 i2p f t) dt (9)

and its inverse

g(t) 5
1
2p

¥

2 ¥
G(f ) exp (i2p f t) df , (10)

are the mathematical tools which connect the two domains

[21]. The representation in the frequency domain G(f )

consists of an amplitude and corresponding phase for each

frequency f . The power spectrum of the function

P(f ) 5 |G(f )|2 1 |G( 2 f )|2 gives the power (energy density

in the frequency domain) in a given frequency interval

between f and f 1 df .

A. Stefanovska and M. BracÏ icÏ38



When a time series of ® nite length T 5 Nts sampled at

discrete points nts is considered, the calculation of the

Fourier transform reduces to a ® nite sum over all measured

values. The resultant discrete Fourier transform (DFT)

G(f k) 5
N 2 1

j 5 0

g( j ts) exp ( 2 i2p j k /N ) (11)

is O . . . de® ned only for discrete frequencies f k 5 k /T ,

k 5 N 2 1. The ® nite length of the signal bounds the

frequency resolution ( D f 5 1/T ) and the lowest detected

frequency whilst ® nite sampling time determines the upper

frequency limit (f max 5 2/ts). Since the sum is taken over

® nite time, the signal is assumed to be periodic with period

T . A frequency between any f k and f k1 1 will contribute to

all G(f k), known as leakage [22]. To reduce leakage, the

original signal is windowed. The choice of the transform

window is a compromise between making the central peaks

as narrow as possible versus making the tails fall rapidly.

Thus it is the window length and shape that then

determines the frequency resolution.

Spectral properties of measured signals are commonly

estimated by the periodogram

P (f k) 5
1

N 2 |G(f k)|2 , k 5 0, k 5 N /2 ,

P (f k) 5
1

N 2 (|G(f k) |2 1 |G(f N 2 k) |2) , k 5 1, . .. , N /2 2 1 .

(12)

The normalizing factor in the periodogram estimate is

chosen in such a manner that the sum of all P (f k) equals

the average square value of the original time series.

Fourier transforms of the ECG and HRV signals

presented in ® gure 6, are obtained as average period-

ograms, calculated from 160 s time segments, taken at a

regular intervals of 80 s.

3.1.2. Wavelet transform. The representation of time

series in the frequency domain bears no information about

the time. Namely, the Fourier transform (9) and its inverse

(10) reproduce the time series as a superposition of periodic

functions. These have sharp peaks in the frequency domain,

but are spread over all time. If a characteristic frequency

varies with time, the corresponding peak will be broader than

its instrumental width as determined by the data window.

The time-varying nature of characteristic frequencies in

the cardiovascular signals demands an analysis in the

time-frequency domain. Yet, the relatively broad fre-

quency band within which characteristic peaks are

expected raises a problem in relation to time and

frequency resolution. In the time-frequency analysis, a

window of ® xed length is shifted along the signal to

achieve time localization and the frequency content of

each window is evaluated. The window length introduces

a scale into the analysis and determines the time and

frequency resolution. By the uncertainty principle, sharp

localization in time and frequency are mutually exclusive.

Therefore, the choice of window length is in practice a

trade-oŒbetween time and frequency resolution. If both

low and high frequencies with diŒerent time spans are to

be detected simultaneously in a signal, a suitable choice is

very di� cult. This is the problem Morlet was facing

while analysing seismic data, which comprised diŒerent

features in time and frequency. To overcome the short-

comings of the Fourier method he came up with the

basic idea of wavelet analysis in 1983 [23]. Later,

Grossman and Morlet laid the mathematical foundations

of the wavelet transform technique [24].

Wavelet analysis is a scale-independent method. As in

the windowed Fourier transform, one begins with a

window function, called a mother wavelet w (u). This

function introduces a scale (its width) into the analysis.

Commitment to any particular scale is avoided by using not

only w (u), but all possible scaling of w (u). The mother

wavelet is also translated along the signal to achieve time

localization. Thus, a family of generally non-orthogonal

basis functions

s ,t 5 |s | 2
p
w

u 2 t

s
. (13)

is obtained. The parameter p is an arbitrary non-negative

number. The prevailing choice in the literature is p 5 1/2
[25]. In this case, the norm of the wavelet || w || and thus its

energy is unaŒected by the scaling operator.

The continuous wavelet transform of a signal g(u) is

de® ned as

~g(s, t) 5
¥

2 ¥

±
s ,t(u)g(u) du . (14)

The wavelet transform ~g(s, t) is a mapping of the function

g(u) onto the time scale plane. The interpretation of ~g(s, t)

depends on the mother wavelet being used.

Not every function can be used as the mother wavelet.

Only those that enable us to reconstruct the original function

g(u) from its wavelet transform ~g(s, t) are admissible.

The su� cient condition for the reconstruction [25] is

¥

2 ¥
w (u) du 5 0 . (15)

The total energy of the signal g(u) can be calculated as

||g||2 5 C 2 1

. 2
|s |2p2 3 |~g(s, t)|2 ds dt , (16)

where the constant C is determined by the shape of the

mother wavelet. The function

q 5 C 2 1|s |2
p2 3 |~g(s, t)|2 (17)

can therefore be interpreted as the energy density of the

signal in the time scale plane [26]. It is often called a

scalogram.
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In numerical applications, the scale s and time t are

restricted to discrete values only. The natural discretization

of the scaling parameter is sm 5 r m , where m [ and the

step r ¤5 1. Within the scale r m the signal is sampled only at

times tn 5 n r m s , s > 0, which means that the sampling

rate is automatically adjusted to the scale.

For certain mother wavelets, orthogonal basis can be

obtained by using r 5 2, resulting in a special application

of the wavelet transform, known as multi-resolution

analysis (MRA). The original signal, sampled at ts, is

split into a `blurred’ version on a coarser time scale 2ts

and a detail on scale ts. This process is then repeated,

giving a sequence of more and more blurred versions

together with details removed at every scale. Several

applications of MRA to cardiovascular signals were

reported [27,28], mainly to capture the main features of

the signal.

In this paper, we follow instead the original idea of

Morlet. By choosing r 5 1.05, and a mother wavelet well

concentrated in both time and frequency, we can detect

precisely the frequency content in a given time interval.

Morlet proposed the use of a Gaussian function, modu-

lated by a sine wave. In the time domain, it is written as

w (u) 5 p 2 1/4 exp ( 2 i2p f 0u) 2 exp ( 2 2p f 2
0 /2) exp ( 2 u2 /2) .

(18)

The choice of f 0 is a compromise between localization in

time and in frequency. For smaller f 0, the shape of the

wavelet favours localization of singular time events, whilst

for larger f 0 more periods of the sine wave in the window

make the frequency localization better. For f 0 > 0.8, the

value of the second term in (18) is so small that it can be

ignored in practice and a simpli® ed expression for the

Morlet wavelet in the time domain is

w (u) 5 p 2 1/4 exp ( 2 i2p f 0u) exp ( 2 u2 /2) . (19)

The corresponding wavelet family consists of Gaussians,

centred at time t with standard deviations s . In the

frequency domain we have Gaussians with a central

frequency f 5 f 0 /s and a standard deviation of 1/2p s.

Therefore, the wavelet transform at a given scale s can also

be interpreted as band-pass ® ltering giving an estimation of

the contribution of the frequencies in this band. The

relation between the scale and the central frequency for the

Morlet wavelet is

f 5
f 0

s
. (20)

The frequency resolution changes with frequency: at low

frequencies (large scales) the resolution is better than at

high frequencies (small scales). Accordingly, the time

resolution is better for high than it is for low frequency

components. In order for peaks to be detected at f 1 and f 2
(f 1 > f 2), they must be separated by at least one half of the

standard deviation of the peak at the higher frequency,

namely f 1 2 f 2 ³ f 1 /4p f 0. The choice of f 0 thus determines

the current frequency resolution. We have taken f 0 5 1.

The wavelet transform contains information on ampli-

tude, frequency and time. In ® gure 7 the absolute value of

the wavelet transform of the HRV signal in the time-

frequency plane is presented. However, it is di� cult to

capture all this information at once, especially since several

almost periodic phenomena are present. Their amplitudes

and frequencies also vary in time. Therefore, various two-

dimensional projections are used. We will use scalograms

averaged over time to compare wavelet transforms

obtained from diŒerent signals, in diŒerent subjects and

under diŒerent conditions. An averaged scalogram of the

HRV signal is presented in the lower part of ® gure 6 b.

Compared to the spectrum calculated by Fourier trans-

form, the low frequency resolution is improved, allowing us

to de® ne the frequency intervals for the characteristic

processes more precisely. By providing an improved

estimation of the frequency content of the HRV signal, a

better understanding of the physiological mechanisms of

the oscillatory processes involved becomes possible. To

gain new insight into those processes, we now present

analyses of the peripheral blood ¯ ow, measured simulta-

neously with other cardiovascular signals.

3.2. Cardiovascular signals

Today several measurement techniques enable non-inva-

sive, continuous, observation of a number of other

cardiovascular functions in addition to the electrical

activity of the heart. A sensor based on piezoelectric

properties of some crystals can be used for pressure

recordings in larger vessels. The same principle is used to

follow the movements of the thorax in the inspiration and

expiration phases of lung function. The Doppler principle

Z

Figure 7. The wavelet transform of the HRV signal in the time-
frequency plane.
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allows for measurements of blood ¯ ow velocity. The tissue

under observation is bathed in either ultrasound or

coherent light. Ultrasound penetrates deeply, however, so

that it can not be directed selectively. That is why, when

ultrasound based instruments are used clinically to measure

blood ¯ ow velocity, they are restricted to large vessels.

For peripheral blood ¯ ow measurements optical sensors

with wide dynamic range are used. The laser light can be

directed into a very small area. Its depth of penetration is

smaller than that of the ultrasound and it can be controlled

by selecting the wavelength and emitted power. Thus, it can

detect blood ¯ ow in the capillary bed. As already

mentioned, this is where matter and energy are exchanged

between the blood and tissue cells, so that we may expect all

processes involved in blood ¯ ow regulation to be re¯ ected

in the corresponding signal.

3.2.1. Peripheral blood ¯ ow. Only four years after the

® rst working laser was demonstrated by Maiman in 1960

[29], Cummins et al. [30] proposed a method of measuring

the velocity of particles in solution by interpretation of the

Doppler-frequency-shifted light. Some years later, Riva et

al. [31] applied this technique to the measurement of red

blood cell velocities in the glass tube ¯ ow model. However,

it was Stern [32] who ® rst used the laser Doppler technique

for blood perfusion measurement in the undisturbed

microcirculation in 1975. Nilsson et al. [33,34] subsequently

provided detailed technical and experimental evaluations of

the technique.

The near-infrared laser is frequently used to measure the

velocity and concentration of red blood cells within a

hemisphere of volume ~ 2 mm3. A ® bre-optic probe carries

a beam of laser light which is then widely scattered and

partly absorbed by the tissue. Light scattered from moving

blood cells undergoes a Doppler shift in the wavelength

while the wavelength of light scattered from static objects

remains unchanged (® gure 8). The magnitude and fre-

quency distribution of the wavelength changes are related

to the number and velocity of blood cells. The back-

scattered light is collected by a ® bre and converted into an

electrical signal. This signal is proportional to the ¯ ow but

unrelated to the direction of blood cell movement.

This technique of blood ¯ ow measurement is limited by

the fact that in the case of occlusion, i.e. stopping of the

¯ ow through the measured area, there is a residual value

called the `biological zero’ , as illustrated in ® gure 9. Even

during occlusion some blood remains in the area under

observation. It is the random Brownian movement of the

remaining red blood cells that results in this residual value.

As a result, the ¯ ow cannot be expressed straightforwardly

in absolute units (e.g ml/s/mm3), but only in arbitrary units

(AU). To obtain an absolute measure, the value of the

biological zero has to be determined for every measure-

ment.

We show in ® gure 9 that during occlusion the oscillations

vanish completely. Moreover, the detection of oscillatory

changes in the ¯ ow is not in¯ uenced by the lack of absolute

units, as long as we provide a calibration with a reference

value. The problem of biological zero is therefore irrelevant

to our quest for information about the oscillatory nature of

the peripheral blood ¯ ow. From ® gure 9 we can also see

that the amplitude of oscillations is comparable in

magnitude to that of the steady ¯ ow on which they are

superimposed, immediately demonstrating the importance

of the oscillations in characterizing the dynamics of blood

¯ ow.

Figure 8. Sketch showing how a beam of laser light is scattered
and absorbed in the tissue. From [35], with permission.

Figure 9. The peripheral blood ¯ ow (top) and its wavelet
transforms (below), before, during and after occlusion of the
vessels proximal to the measurement site. An apparent residual
¯ ow, named the `biological zero’ remains during occlusion,
whereas the oscillations vanish. The amplitude of oscillations,
before and after occlusion, is comparable in magnitude to that of
the steady ¯ ow on which they are superimposed, demonstrating
the importance of the oscillations in characterizing the dynamics
of blood ¯ ow.
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Even in the early analyses of laser Doppler blood ¯ ow

recordings [34,36], the oscillatory nature of the ¯ ow was

noted. HoŒman et al., using a frequency histogram,

reported oscillations, synchronized with the heart rate

and also oscillations in the HF and LF range [37]. Both

windowed Fourier and wavelet analyses of signals recorded

for 20 min revealed ® ve characteristic frequencies in the

interval from 0.0095 Hz to 2 Hz [38,39]. The characteristic

peaks typically appear around 1 Hz, 0.3 Hz, 0.1 Hz,

0.04 Hz and 0.01 Hz, almost at the same frequencies as

those discussed above: the ® rst one in the ECG spectrum

and the latter four in the spectrum of the HRV signal.

The energy of each particular oscillation varies with the

vessel’ s diameter and network density, i.e. the local ¯ ow

resistance. There are two possibilities for making the signals

comparable in terms of energy. One is a quantitative

assessment of the resistance in the adjacent network, where

the ¯ ow is measured. At present, a reliable, non-invasive

technique is unfortunately not available. The other

possibility is to choose measurement sites where, based

on anatomical evidences, similar vessel resistance is

expected. When the blood ¯ ow is measured on the sites

with similar resistance, the contribution of each oscillatory

process does not depend on the measurement site, or time

of the measurements [39]. In ® gure 10 the energy within

intervals around each of the ® ve peaks (labelled I± V) is

presented for two sets of measurements: (a) simultaneous

measurements on two diŒerent sites and (b) two consecu-

tive measurements on the same site. We have shown that no

statistically signi® cant diŒerence exists and therefore that

the energy of each interval can be taken as time and space

invariant. We will address the question of interval bounds

and statistical presentation later in section 3.2.4.

3.2.2. Simultaneous measurements. In searching for the

physiological origin of the oscillations observed in the

ECG, HRV and peripheral blood ¯ ow we made simulta-

neous recordings of several cardiovascular functions

[38,40,41]. Signals of cardiovascular origin were measured

on healthy young male subjects. During the measurement

the subjects were lying still on a bed and they were asked to

relax. The ECG and blood pressure were sampled at

400 Hz, while a sampling rate of 40 Hz was used for

respiration and blood ¯ ow signals. The recordings lasted

20 min. Before evaluating the frequency content the trend

was removed from all signals and all but ECG were

resampled to 10 Hz. The left part of ® gure 11 presents a

25 s segment of the respiration, ECG, HRV, blood pressure

and peripheral blood ¯ ow on the right arm and the right leg

after pre-processing. The blood pressure was recorded on

the index ® nger of the left hand, while the sensors for blood

¯ ow measurements were placed over the bony prominences,

of the wrist and ankle joint.

The peaks of the average wavelet transforms appear at

similar, in some cases even at exactly the same, frequencies

in all measured signals (® gure 11, right). DiŒerences exist,

however, in the amplitudes of the oscillations. For the ECG

and blood pressure signals the amplitude of the heart beat

frequency dominates the spectrum. The spectrum of a

respiratory signal has one dominant peak, at ~ 0.2 Hz. In

the HRV signal this peak is of comparable amplitude to

those of slower oscillation between 0.0095 Hz and 0.15 Hz.

In the signal of peripheral blood ¯ ow the amplitudes of all

oscillations are of the same range. Hence, we can see that

the peripheral blood ¯ ow re¯ ects the activities of both the

local and the central mechanisms of cardiovascular

regulation.

3.2.3. Physiological nature of oscillations. Not all of the

observed oscillations are yet understood in physiological

terms. Those that can be selectively observedÐ the heart-

beat and respirationÐ are of course relatively well under-

stood. In other cases only indirect evidence is available, and

we will see that the position is less clear.

The basic frequency in the ECG signal, around 1 Hz

corresponds of course to the heart rate. At rest, its value

ranges from 0.6Hz in sportsmen to 1.6Hz in subjects with

impaired cardiovascular systems. The heart’ s pumping

activity is manifested in every single vessel and is also

Figure 10. (a) Time and (b) space invariance of the oscillatory
components of the peripheral blood ¯ ow, measured in the areas
where the vessels have similar density and resistance. For details,
see text.
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present in the microcirculation through the capillary bed. It

is highly dominant at the outlet of the heart, as well as in

the larger vessels. Its contribbution gradually diminishes

with decreasing vessel diameter. The elasticity of the

vessels, and their structural properties, also aŒect the

magnitude of this ¯ ow component.

The spectral peak at around 0.2± 0.3 Hz, corresponding

to 12± 18 events per minute, well known in physiology as the

breathing frequency [2]. The existence of respiratory

modulation of the heart rate has long been recognized

[18]. This frequency, observed earlier in the HRV and

blood pressure signals, was designated [12,15,42] as the HF

interval, and attributed to the parasympathetic autono-

mous control. In the peripheral blood ¯ ow signal the

respiratory origin of this peak was discussed by HoŒman et

al. [37]. By simultaneous recordings of both respiratory and

blood ¯ ow signals, direct evidence was also obtained

[38,43].

In early analyses of the blood pressure and HRV signals,

oscillations with periods of ~ 10 s were associated with

blood pressure regulatory mechanisms [12,42]. Since then

several pieces of indirect evidence as to their local origin

have been reported. These oscillations are a manifestation

of the myogenic activity of the smooth muscle cells

displaced in the walls of resistive vessels. The smooth

muscle cells respond continually to changes in the

intravascular pressure [44]. This response is mediated by

oscillations in the ion concentrations, mainly Ca 1 1 , across

the membrane of vascular smooth muscles. For isolated

vessels, the myogenic origin of these oscillations was

demonstrated either by measuring dynamically the dia-

meter changes of vessels [45], or ion concentrations [46],

though not in humans. In ® gure 11 the peak around 0.1 Hz

is clearly visible in both blood ¯ ow signals, the frequency of

the peak typically being higher on the hands than on the

legs.

The peak of ~ 0.04 Hz was observed in both the HRV

and blood pressure signals [41,42] and in the peripheral

blood ¯ ow signal [38]. It is attributed either to metabolic

[42], or to neurogenic processes. Although these oscillations

cannot be selectively measured, indirect evidence for their

origin was reported by Kastup et al. [47]. After disconnect-

ing nerves from the vessels, known as denervation, which

suppresses the neurogenic regulation of the vessel radius,

they observed that the ~ 0.04 Hz oscillations disappeared.

This peak can be detected in the averaged scalograms of all

simultaneously measured signals presented in ® gure 11. It

usually appears smeared due to the variation of its period

with time.

Long recordings and good frequency resolution also

enabled us to isolate a peak at ~ 0.01 Hz. We have found it

in all cardiovascular signals, although its exact position

diŒers from one to another, suggesting that it is of local

origin. There is indirect evidence [48] that this oscillation is

related to the endothelial function. Moreover, some

experiments suggest that nitric oxide, a metabolic substance

Figure 11. Simultaneously measured cardiovascular signals (left) and their wavelet transforms (right). HRV is in Hz, other values are
in arbitrary units.
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that is released from endothelial cells, has an in¯ uence on

the state of contraction of the vessel musculature. Recent

studies demonstrate that nitric oxide plays an essential

immunological and citotoxic role in the human organism.

The reader seeking physiological insight into the involve-

ment of this substance in the dynamics of blood ¯ ow are

referred to [49] and the references therein.

3.2.4. Frequency bands and quantitative measures. The

positions of the spectral peaks change with time and also

diŒer from one subject to another. For every peak,

however, a frequency interval exists within which it is

found in all subjects. The local minima of the average

wavelet transform, were used to divide the frequency band

between 0.0095 Hz and 2 Hz into ® ve intervals.

The intervals de® ned in ® gure 6 b diŒer from the

recommended standards for heart rate variability [17].

The frequency resolution of the wavelet transform enabled

us to detect several peaks in the VLF interval ranging from

0.003 to 0.04 Hz, of which two were above 0.0095 Hz.

Therefore, we have split this part of VLF interval into (I)

from 0.0095 Hz to 0.002 Hz where, according to our

studies [48,49], the metabolic process is manifested and

(II) from 0.02 Hz to 0.06 Hz, where the neurogenic process

is manifested [47]. The interval (III) from 0.06 Hz to

0.15 Hz, where the myogenic process is most probably

manifested, corresponds to the LF interval; however, its

lower bound was set to 0.06 Hz since a peak around

0.04 Hz was detected. Interval (IV) from 0.15 Hz to 0.4 Hz

on which the respiratory activity, measured simultaneously,

has its dominant peak is the same as the HF interval, while

the last interval, (V) from 0.4 Hz to 2 Hz is the interval of

heart frequency.

These intervals were chosen based on over 500 scalograms

of around 100 subjects, either healthy subjects, athletes, or

subjects with some cardiovascular impairment. Neverthe-

less, a revision of the boundary values using, for example,

higher order spectral analysis is needed. The identi® cation of

high harmonics and linear combinations of basic peaks

could provide better distinction between the peaks.

The intervals were chosen in such a way that the peak

corresponding to any given physiological prosess is always

in the same interval. Thus, we can roughly ascribe the

energy within one interval to the activity of that process,

and we can thus obtain a quantitative measure of process

oscillations [39], which can be used to compare diŒerent

signals.

According to equation (17), the physical quantity behind

the scalogram is the energy density. The average energy in a

given frequency band ei(f i1, f i2) is

ei(f i1, f i2) 5
1
t

t

0

1/f i1

1/f i2

1
s2 |~g(s, t)|2 ds dt . (21)

The energy is averaged over time and p= ô is taken.

However, the absolute value of the energy de® ned by

equation (21) may sometimes be misleading. If the total

energy of the signal increases, it is very probable that the

energy in each band will increase. In such cases, it is in our

interest to ® nd out if and how the distribution of the energy

among the processes has changed. Therefore, we shall

introduce the normalized energy in a given frequency band

e i(f i1, f i2)

e i (f i1, f i2) 5
ei(f i1, f i2)

etotal
, (22)

where etotal is the energy of the signal contained in the

frequency band of our interest, i.e. between 0.0095Hz and

2Hz.

To avoid anomalies in the average scalograms intro-

duced by particular subjects, we will base our analyses on

homogeneous groups of subjects. Statistical plots will be

used to present the median values, 10% , 25% , 75% and

90% of the range. The value that drops out of these limits is

represented as a cross. To compare the values between the

groups, the Mann± Whitney test for statistical signi® cance

will be used [50]. If the probabilities of the median being

equivalent is below p= 0.05 the diŒerences between the

groups are set as signi® cant.

3.2.5. Reversible changes. Because the cardiovascular

system operates continuously, we can reveal many of its

functional characteristics even from a normal resting state.

Additional insight can be obtained by observing how it

reacts to perturbations. In living organisms, the choice of

ways of introducing perturbations is limited. One possibi-

lity is to induce changes by delivering pharmacological

substances, for example vasodilator substances [49]. An-

other possibility is to impose changes by increased physical

activity. In the following, we will present the exercise-

induced changes, evaluated by the wavelet transform of the

peripheral blood ¯ ow signals.

Signals were measured for nine young healthy male

subjects. In each case, three signals were recorded before,

and two after, 40 min of exercise on a treadmill at a 3 s

uphill gradient [51]. Each of the signals was recorded for

20 min. The maximal oxygen uptake (VO2max) had been

evaluated a day prior to the measurements for individual

subjects, and the exercise intensity was standardized to a

level of 80% VO2max. During the measurement of peripheral

blood ¯ ow, the subjects were in a supine position in a room

in which the temperature was maintained constant.

Sixty second segments of typical blood-¯ ow signals

recorded before and after exercise, and the group median

values of normalized energies, obtained from the wavelet

transforms calculated from the entire signals, are presented

in ® gure 12. It is obvious that both the steady level, and the

amplitude of oscillations, are markedly higher after
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exercise. Although the characteristic frequencies and

amplitudes of oscillations have changed, ® ve characteristic

peaks were found in the averaged scalograms of all signals,

both before and after the excercise.

The energy within each frequency interval was calcu-

lated from the wavelet transform of the measured signals.

The exercise induced a substantial increase in total energy,

comparing to that in the blood ¯ ow while resting (® gure

13). The energy in the last measurement, which on average

was made between the 35 and 55 min after exercise, had

decreased almost to the initial value. Changes in the

frequencies of the peaks, and normalized energies within

the corresponding intervals, are illustrated in the lower

plot of ® gure 12, while the statistical plots are given in

® gure 13. It is evident that exercise induced signi® cant

changes in heart rate, and in the respiration and myogenic

frequencies. It is well known that the heart rate and

respiration frequency increase during exercise and remain

higher for some time afterwards. The myogenic process

not only has a higher characteristic frequency immediately

after exercise, but its normalized energy has also increased

signi® cantly.

Indeed, we may conclude that increased myogenic

activity, with the characteristic frequency between 0.06 Hz

and 0.15 Hz, is the main change induced by a single episode

of exercise. It is interesting that the normalized energies of

the neurogenic process, with its characteristic peak around

0.04 Hz, and metabolic process, with its characteristic peak

around 0.01 Hz, are reduced after exercise. All changes

decay shortly after exercise. However, imposed demands of

the cells lead to enhanced metabolic process as well as

increased energy of the heart peak when exercise is regularly

repeated. Such changes were observed in a group of

sportsmen, as compared to the controls [39].

3.2.6. Irreversible changes. A single episode of exercise

induces short-time changes and, after their decay, the

original dynamics is re-established. Impairment of the

cardiovascular system, on the other hand, can result in

irreversible changes. In this section we present the results of

a clinical study which included subjects with cardiovascular

diseases. In addition to a control group, consisting of 17

Figure 12. A 60 s segment of the blood ¯ ow signal before and
after exercise (upper plot) and the group median values of
normalized energies and frequencies of all peaks (lower plot).

Figure 13. The total energy of the blood ¯ ow signals, the frequencies of the peaks and the normalized energy of intervals around each
peak, for all ® ve measurements, before and after exercise.
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young male subjects, a group of 15 subjects at least 4 days

after myocardial infarction, and a group of 13 subjects with

diabetes were included in the study. The set of signals

described in section 3.2.2. was measured for all subjects,

while at rest. We report only the main ® ndings here. The

complete set of results will be presented and discussed

elsewhere.

While infarction aŒects mainly the pumping function of

the heart, diabetes changes the metabolic e� ciency of the

cells and by this resistance of the vessels. Consequently, the

heart is permanently imposed to an increased work load.

These changes are clearly manifested in the HRV signal.

The total energy of the signal is signi® cantly lower in the

two groups of patients than it is in the control group (® gure

14). For comparison, the total energy of the HRV signal

measured for a subject in coma is presented in the same

® gure. The energy of this signal is practically zero,

representing a state in which there are almost no variations

in the heart rate.

The decreased variability of the heart rate is manifested

as a sharpening of the characteristic peaks in all other

cardiovascular signals, as presented in ® gure 15. In this case

the arteriolar and venous pressure were measured inva-

sively, via an inserted ¯ uid-® lled catheter and transducer

system, as a part of the routine procedure in intensive care

units. Since the peaks hardly varied at all in time, the

Fourier method gave distinct spectral peaks. Moreover,

peaks appearing at linear combinations of the characteristic

frequencies are also observable. It is also obvious that the

ratio between characteristic frequencies tends to become

rational.

We can interpret these results as illustrating that

cardiovascular impairment results in signi® cantly reduced

interactions among the processes involved in control of the

the blood ¯ ow. This, among other changes, results in

decreased variability of the heart rate and therefore smaller

energy of the HRV signal. This may mean that the other

processes are less e� cient in signalling their needs to the

heart, and/or that the heart is unable to cope with their

demands.

The reduction in heart variability is often interpreted as

decreased complexity and chaos in the activity of the heart

[27,52]. However, it is the study of changes in the spectral

components that gives us insight into the pathology of

diseases [53,54]. Evaluation of the contribution of each

spectral component might provide a diagnostic and

predictive tool for a whole range of diseases related to the

cardiovascular system.

Figure 14. Total energy of the HRV signal measured in healthy
subjects, patients after myocardial infarction, diabetic patients
and a patient in coma.

Figure 15. Signals recorded from the cardiovascular system of an intensive care patient (left) and corresponding amplitude spectra
(right). HRV is in Hz, other values are in arbitrary units.
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4. Nonlinear analysis

The ultimate goal of a physical description of a system is a

mathematical formulation as a set of diŒerential equations.

Before we proceed to such a description, we must learn as

much as possible about the system in question. So far, we

have analysed the cardiovascular signals in the frequency

domain. The analyses imply that, on a time scale of ~ 1

minute, ® ve almost periodic processes contribute to the

dynamics of the blood ¯ ow. Developments in the theory of

nonlinear dynamics, and its numerical applications to

chaotic time series over the last three decades, have

provided several methods for estimating the invariants of

the dynamics from scalar signals, as we shall now describe.

4.1. System characterization

Based on frequency analysis, the following conclusions can

be drawn regarding the physical nature of the system: (i)

well-de® ned spectral peaks at characteristic frequencies are

present in the signals; (ii) peaks at the same frequencies

were found in all signals, regardless of the measured

quantity or the measurement site; (iii) although the peaks

are not sharp, and vary in time for each one of them a ® nite

frequency interval exists within which its variations are

con® ned; (iv) the existence of the peaks is not in¯ uenced by

irreversible or reversible changes, implying their robust

nature and the corresponding structural stability of their

sources; (v) from their response to perturbations we may

conclude that a mutual dependence exists among the

sources. These results lead to the inference that the source

of each observed peak is an oscillator, and that the

oscillators are mutually coupled. Robustness and structural

stability are characteristic of certain nonlinear oscillators.

The time evolution of an oscillator may be obtained as

one of the solutions of a general diŒerential equation

Ç (t) 5 (¹, (t)) (0) 5 0, [ . d, (23)

where (t) is a state vector, Ç (t) 5 d /dt and the ¯ ow is

some general nonlinear function. The vector of control

parameters ¹ is kept constant during the observations. By

changing the control parameter, transitions between

diŒerent types of behaviour can be induced. Graphically,

the solutions can be presented as time series

x1(t), x2(t) ...xd(t), or alternatively as a trajectory in a

geometric phase space . d . The phase space, ® lled with

trajectories, is called the phase portrait of the dynamical

system. After transients are over, the motion of (t) settles

typically near a subset of the phase space, called an

attractor. The phase space volume occupied by a real

physical system can either be preserved or contracted by

time evolution. In the ® rst case, the system is conservative,

in the other dissipative. For dissipative systems, the volume

occupied by the attractor can be relatively small compared

to the initial volume of the phase space.

The simplest attractor of a dynamical system is a stable

® xed point. A periodic motion, on the other hand, results in a

limit cycle. A superposition of periodic motions, quasi-

periodic motion, has an attractor in the shape of a torus.

Figure 16 presents the phase portrait of the respiratory signal.

The almost periodic nature of the signal, already discussed in

the time and frequency domain, results in a limit cycle in

phase space. Since the other systems in¯ uence the respiratory

function only slightly, we may observe the limit cycle in two

dimensions, although it is broadened. In blood ¯ ow, the

contributions of all processes are comparable and a higher

dimensional phase space is needed to portray the attractor.

For this almost quasi-periodic ¯ ow with ® ve characteristic

frequencies the attractor is expected to be a 5-torus.

However, when nonlinearities are involved, even a ® nite

dimensional system need not be quasi-periodic. The motion

within an attractor may be unstable in some directions.

These instabilities are manifested as an exponential

separation of trajectories. Such systems exhibit a sensitive

dependence on initial conditionsÐ which is the hallmark of

chaotic behaviour.

The characterization of nonlinear dynamical systems is

based on geometrical and statistical properties of the

attractor, such as its entropy, various dimensions (informa-

tion, HausdorŒ, correlation ...) and Lyapunov exponents

[55,56]. Its statistical properties become relevant as soon as

the dynamics is su� ciently complicated that geometrical

information about the shape of the attractor is no longer

available. From here on, it is the statistical theory which

can distinguish diŒerent degrees of complexity. The basic

tool which enables us to measure statistical properties of

the system is the ergodic theory. Ergodic theory states that

a time average equals a space average. Or, in other words,

that a trajectory of the system explores the entire phase

space that is energetically available to it [57].

The numerical algorithms for calculation of the correla-

tion dimension [58] and Lyapunov exponents [55] have

frequently been applied to characterize nonlinearities in

biological signals (see [59 ± 61] and references therein).

Figure 16. The respiratory signal embedded in two-dimensional
phase space.
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Since the very long observation time introduces non-

stationarities, the number of points necessary for a

successful estimation of correlation dimension for high-

dimensional systems [62] can only be obtained by over-

sampling. Oversampling, however, emphasizes the noise in

the signal. Therefore the correlation dimension cannot be

reliably estimated for the case of biological signals resulting

from high-dimensional systems [63]. It was proposed,

however, that the correlation dimension can still be used

for qualitative characterization [64]. By comparing correla-

tion integrals obtained from original time series and their

surrogates, i.e. randomized sequences with similar spectral

and statistical properties as the original signal, one may

distinguish between deterministic and stochastic or noise-

dominated signals. We have shown that all measured

signals are largely deterministic [40].

The number of points is crucial for all algorithms used

for the characterization of nonlinear system from measured

signals, including the estimation of Lyapunov exponents.

As we shall see below, an algorithm is available for the

estimation of Lyapunov exponents, based on an approx-

imation of the local ¯ ow in phase space. In this case, the

quality of approximation is more important than the

number of points itself.

4.2. The Lyapunov exponents

The Lyapunov or characteristic exponents measure the rate

of convergence or divergence of nearby trajectories in the

phase space. Thus, they determine both the stability of the

trajectories and the system’s sensitivity to initial conditions.

This makes them one of the most meaningful characteriza-

tions of a nonlinear dynamical system. Using Lyapunov

exponents, one can distinguish between ® xed points and

periodic, quasi-periodic or chaotic motions.

The Lyapunov exponents characterize the response to

small perturbations of the trajectories of the system (24).

The time evolution of a small perturbation is governed by

linearized equation in the tangent space

d Ç (t) 5 D (¹, (t)) d (t) d (0) 5 d 0 , (24)

where D is the Jacobi matrix of the ¯ ow . At the end of

the last century, A. M. Lyapunov introduced a measure of

average contraction of the perturbation to a given

trajectory as

(̧ d 0) 5 lim
t ® ¥

1
t

log
5 d (t) | d 05

5 d 05
, (25)

today known as the Lyapunov exponents. Using d linearly

independent initial conditions d 01 .. . d 0d , one obtains a

fundamental system of solutions ¸1 ³ ¸2 .. . ³ ḑ. For

ergodic systems the set of i̧ does not depend on the initial

condition d 0i and so the i̧ are global properties of the

attractor [65]. As such, they bear no information about the

local behaviour on the attractor. Therefore, local Lyapu-

nov exponents were introduced [66]. In this case, the limit

t ® ¥ is not taken in equation (25). These values may vary

signi® cantly over the attractor, but their means converge

towards the global exponents.

If any i̧ is positive, small perturbations will grow

exponentially. If all i̧ are negative, any perturbation will

decrease and the attractor is a stable ® xed point. In the case

of a zero exponent, the size of the perturbation does not

change in time. A stable periodic state, for example, has one

zero exponent corresponding to a perturbation tangent to

the limit cycle, and all the other exponents are negative. A

quasi-periodic system with k incommensurate frequencies

has k zero exponents, and all others are negative. Every

attractor of a smooth dynamic system, given by equation

(23), has at least one zero Lyapunov exponent correspond-

ing to a perturbation tangent to the trajectory. Such a

perturbation simply moves one along the same orbit. The

exponents of a Hamiltonian system come in conjugate pairs,

consisting of a positive and a negative exponent of the same

magnitude, and two of them vanish [55]. One zero exponent

is associated with the conservation of energy and the other

with the fact that the evolution equations are diŒerential.

For systems whose equations of motion are known

explicitly there is a straightforward method of computing

all Lyapunov exponents [67]. This method cannot, how-

ever, be applied directly to experimental data. There are

two approaches to estimating the exponents from measured

signals. In the ® rst, introduced by Wolf et al. [68] and

Rosenstein et al. [69], two nearby points in the phase space

are followed and only the largest exponent is evaluated.

The second approach, introduced by Eckmann and Ruelle

[55], as well as by Sano and Sawada [70], is based on

estimating the Jacobians of the map.

For scalar time series s(t) the attractor can be

reconstructed by the method of delay coordinates, intro-

duced by Packard et al. [71]

(t) 5 [s(t), s(t 1 s ), . .. , s(t 1 (d 2 1) s )], (26)

where t 5 ts, 2ts, . ..nts 2 (d 2 1) s , d is the dimension of the

embedding space and the time lag s is an integer multiply of

the sampling time ts.

In the points along a chosen trajectory on the embedded

attractor, a set of neighbouring points is evolved for a

chosen time (evolution time). Based on these two sets, the

local ¯ ow is approximated by a set of basis functions. From

subsequent Jacobi matrices, d Lyapunov exponents are

calculated (for details see [56]). The great advantage of this

method compared to the trajectory tracing method is that

one can deal with arbitrary vectors in tangent space while

the observed data points are used only to approximate local

¯ ow. Thus, we can calculate all exponents (including

negative ones) as long as the approximation of the ¯ ow is

adequate.
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The number of calculated exponents is equal to the

dimension of the reconstructed phase space d. If d is too

small, the attractor is not able to unfold and the calculated

exponents are erroneous. On the other hand, if d is too

large, the reconstructed attractor is contained in a

submanifold of dimension m< d, and d Ð m spurious

exponents that are unrelated to the dynamics of the system

are obtained. Under time reversal, true exponents change

sign, while the spurious ones do not [56]. In this way, they

can be identi® ed.

In low embedding dimensions, the global Lyapunov

exponents of the blood-¯ ow signal vary from one dimen-

sion to the other, but as the dimension reaches 10, two

patterns are observed: either four paired and one zero or

® ve paired exponents are calculated. In the latter case, one

pair equals zero within the calculation error [72,73]. Among

the exponents of the reversed signal, four or ® ve pairs were

observed again. The other exponents were found to be

negative and of the same magnitude as some of the

exponents obtained from the original signal, also with

negative sign. Therefore, they can be identi® ed as spurious.

To reveal local properties of the attractor, local

Lyapunov exponents were calculated. Figure 17 presents

the distribution of the values of the ® rst nine exponents,

calculated in an 11-dimensional embedding space. Paired

values are obtained againÐ four paired and one zero

exponent.

The appearance of an exponent equal to zero within the

calculation error shows that the blood ¯ ow dynamics is

governed by a deterministic system. Paired values are an

indication of the almost Hamiltonian nature of the system

that regulates the ¯ ow of blood on a time scale of minutes.

Moreover, the number of pairs, namely ® ve, support the

hypothesis that ® ve oscillatory subsystems are involved in

the regulation.

5. System description

We have obtained some convincing evidence that the

system is largely deterministic: the existence of character-

istic frequency peaks in all measured signals; their non-

vanishing autocorrelation function [40]; a zero Lyapunov

exponent of peripheral blood ¯ ow signal; and diŒerences

between the correlation integrals of original signals and

their surrogates.

It is therefore possible to describe the dynamics within

the cardiovascular system as a solution of a set of

diŒerential equations. The oscillatory nature of the

processes involved in blood ¯ ow regulation, and their ® nite

number, provided the starting point for the formulation of

these equations. It must be borne in mind that the processes

are mutually interdependent. Their joint action is directed

towards a single goal: to provide matter and energy

continuously to each cell. To achieve this goal, they must

act collectively so that, at any given moment, the reaction

of each depends on the state of all the others. In the

mathematical formulation, these mutual dependences

appear as couplings between the oscillators.

5.1. Couplings

The eŒect of coupling between two oscillators on their

behaviour depends on its strength. Weak couplings result in

a variation of the characteristic frequencies of the

oscillators, while strong couplings may lead to qualitative

changes in the system behaviour, i.e. phase transitions.

If couplings did not exist in the cardiovascular system,

we would have sharp peaks and the characteristic

frequencies, which in healthy subjects at rest are only

tending towards a rational ratio, may further become

commensurate. The resonance phenomenon, for example,

is one of the possible scenarios of how the system collapses.

The other possible scenario is that in this case the

characteristic frequencies might become completely incom-

mensurate. The couplings enable the exchange of informa-

tion among the processes and are therefore fundamental to

the appropriate functioning of the cardiovascular system.

Understanding the physical and physiological nature of

these couplings is obviously essential to understanding how

the whole system works. The frequency and amplitude of

each observed oscillation re¯ ect both the activity of the

oscillator itself and the eŒect of all couplings. Although the

Figure 17. The distribution of local exponents of the blood ¯ ow signal of a healthy person, calculated from 40 diŒerent starting points.
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eŒect of couplings cannot be measured separately, we may

however extract it from the data using a variety of

techniques for the analysis of phase, frequency and

amplitude couplings.

One of earliest couplings to be identi® ed, and the most

frequently investigated, is that between the heart and

respiratory activity, known as the respiratory arrhythmia.

Although it is usually studied from the HRV signal, it is

also visible in the peripheral blood ¯ ow signal. We present

in ® gure 18 the corresponding wavelet transform. Fre-

quency and amplitude variations of the ¯ ow component,

driven by the heart are also shown. They are presented as

projections of the peak value of the wavelet transform onto

the time-frequency and time-amplitude planes. It is notable

that the heart frequency is modulated by the frequency of

respiration, while the amplitude of the ¯ ow, synchronized

with the heart beat, is modulated by slower oscillatory

processes, dominated by the myogenic frequency of around

0.1 Hz.

We can see from the scalograms that the peaks at lower

frequencies vary in time as well. It may be assumed that

couplings, similar to the one presented in ® gure 18, also

exist among the other oscillators. Based on the analysis of

the system in diŒerent states, normal and perturbed, we

may presume that all couplings are weak.

5.2. Coupled oscillators

In the following, we present diŒerential equations which

govern the regulation of the peripheral blood ¯ ow in a

single point of the vessels network. While the Navier± Stokes

equations, presented in section 2 give the Euler description

of the ¯ ow, we use the Lagrangian description to follow the

contribution of individual processes to the ¯ ow.

First, we shall introduce the ¯ ow (xi) and its velocity (yi ),

contributed by each oscillator separately and then consider

their collective activity. The same type of oscillator will be

used for all ® ve processes. In view of the experimental

evidence showing that the oscillators are both robust and

nonlinear in nature, a form

Çxi 5 2 xiqi 2 yi2p f i ,

Çyi 5 2 yi qi 1 xi2p f i , qi 5 a i ((x
2
i 1 y2

i )1/2 2 ai ) , (27)

was chosen [38]. The index i denotes the ith oscillator, i= 1

the heart, i= 2 the respiratory, i= 3 the myogenic, i= 4 the

neurogenic and i= 5 the metabolic oscillator. ai is the

amplitude, and fi the characteristic frequency of the

oscillator. The constant a i determines the stability of the

limit cycle. It is interesting to compare (27) with the van der

Pol oscillator [74], which has often been used to describe

heart activity. The latter is a relaxation oscillator, and most

of the energy is exchanged in a particular part of a cycle. In

the cardiovascular system, this is true only at the output of

the heart, whereas in the periphery energy is uniformly

exchanged during the whole cycle. The shape of the ¯ ow in

one heart beat cycle, presented in ® gure 4, also diŒers from

the solution of the van der Pol equations.

Equation (27) describes an autonomous oscillator. The

couplings lead to additional terms in the equation. The

present understanding of couplings allows us to specify

only the sign of coupling terms. Therefore, linear couplings

will be used. For the heart oscillator, we obtain

Çx1 5 x1q1 2 y12p f 1 1 g 2x2 2 g 3x3 2 g 4x4 1

g 5x5 2 g 6( 1 2 2) ,

Çy1 5 y1q1 1 x12p f 1 1 g 2y2 2 g 3y3 2 g 4y4 1 g 5y5 . (28)

1 and 2 represent the in¯ ow and out¯ ow of blood at the

point observed. The coe� cient g 2 represents the in¯ uence of

respiration to the heart rate. During inspiration the heart

beats faster, while in the expiration phase its rate decreases.

Both the myogenic and neurogenic activities contribute to the

stiŒness of the vessels and by this increase the resistance to the

¯ ow. Therefore, their in¯ uences are introduced by 2 g 3 and

2 g 4. The metabolic activity reduces stiŒness and decreases

resistance to the ¯ ow. This coupling is introduced via g 5.

As it is evident from the HRV signal, all processes have

an impact on the pumping action of the heart and through

this on the ¯ ow and velocity of the blood. The respiratory

activity, on the other hand, is in¯ uenced least by the rest of

the system.

The equations for the respiratory ¯ ow and velocity

components can then be written as

Çx2 5 x2q2 2 y2 x 2 1 h 4x4 1 h 5x5 1 h 6( 1 2 2) ,

Çy2 5 y2q2 1 x2 x 2 1 h 4y4 1 h 5y5 . (29)

Figure 18. The wavelet transform of the peripheral blood ¯ ow
signal within the frequency interval corresponding to heart
activity. Variations of frequency and amplitude are plotted as
projections of the peak value onto the time± frequency and time±
amplitude planes.
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Only the neurogenic ( h 4) and metabolic ( h 5) activities

modulate the ¯ ow component, driven by the pressure

diŒerence generated by the respiratory activity. The

neurogenic in¯ uence is considered because breathing is

under a continuous autonomous control. Moreover, the

bilateral transection of the vagus nerve has been shown to

result in slower breathing and deeper inspiration [2]. The

lungs also adapt their activity to the metabolic needs of the

cells. The higher the metabolic activity the deeper and

faster the respiration is.

In the proposed model, the other three systemsÐ

myogenic, neurogenic and metabolicÐ were also described

in an analogous way. The experimentally observed

characteristic frequencies were used to characterize each

of them, and their interrelations were approximated by

linear couplings, based on physiological evidence. How-

ever, additional studies are necessary to elucidate further

the origin and nature of these slower oscillators and their

mutual couplings.

Note that, in formulating our mathematical description,

we have consciously chosen an oscillator as the basic unit

for construction of our model. Although this choice is

based on the experimental and clinical evidence discussed

above, and although many biological systems have been

shown to be governed by oscillators [75 ± 77], it is not the

only possible choice. In addition to van der Pol, Clynes [78]

also described the heart activity with an oscillator. He used

a harmonic oscillator with a variable frequency and two

separate equations to describe the variability during

inspiration and expiration. The majority of the proposed

models, however, interpret the observed oscillations in the

HRV and blood pressure signals in terms of nonlinearities

and time delays [79 ± 85]. They concentrate mainly on

short-term blood pressure control mechanisms, including

respiratory oscillations and oscillations with a period of

~ 10 s.

The reason why we favour coupled oscillators as a model

of the processes governing blood ¯ ow through the

cardiovascular system, rather than a set of delay-diŒer-

ential equations, is twofold. First, the delay is introduced

somewhat arti® cially to create an oscillatory behaviour that

is already inherent for our basic units. In reality, there is

physiological evidence that the underlying processes can

also function autonomously, supporting the idea of an

oscillator-based model. Secondly, whereas delays are

certainly important in reactions to isolated transients, the

cardiovascular system is constantly reacting to small

perturbations. Its existence is determined by its ability to

cope on a continuing basis with changes resulting from the

mutual interaction of the processes involved. In the coupled

oscillator model, the time needed for mutual interactions is

manifested as phase shifts between the oscillators.

The full version of the proposed model consists of ten

coupled ® rst order diŒerential equations. An analytic

solution of such a system would be, to say the least, hard

to obtain. The alternative possibility is a numerical

calculation, which is however sensitive to the choices of

integration method and of parameter values. A recently

discussed method based on analogue circuits [86] seems

potentially a promising way of studying the solutions of

high order diŒerential equations of this kind.

For the present, however, instead of solving the

equations directly, we have obtained a solution starting

from the known physical and physiological properties of

the cardiovascular system [87]. The eŒects of all experi-

mentally observed processes on one pumping cycle of the

heart were considered and a mathematical description of

oscillations in the blood ¯ ow was acquired. Physical

characteristics of vessels were described by the windkessel ²
model [88]. This consists of a capacitor representing the

compliant aorta, and a resistor representing the stiŒer

peripheral vessels, connected in parallel. Earlier variants of

this model attempted to describe either the wave motion of

the blood [89] or the regulatory processes [8,90], but dealt

separately with individual sections of the cardiovascular

system. Given the couplings that are known to exists

between the processes, however, a proper understanding of

the ¯ ow dynamics clearly requires consideration of the

physics of the system as a whole, treated as an entity.

5.3. Relations among the oscillators

The relationship between the blood ¯ ow , the pressure P

and the vessel’ s resistance R is de® ned by Ohm’s law

5
P

R
.

Each of these variables oscillates around its steady-level

5 0 1 D 0 , P 5 P0 1 D P0 , R 5 R0 1 D R0 .

The ¯ uctuations are determined by the state variables of the

oscillators xi . From the existing physiological evidence

discussed above, we may assume that the heart’ s activity

(x1) directly increases the blood ¯ ow value

D 5 e 1x1,

and the respiratory activity (x2) increases the pressure

diŒerence

Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð

² The windkessel model is based on mechanical properties of vessels and

describes the pulse-wave propagation of the blood. Vessels that consist of
a relatively large proportion of elastic fibres, such as the aorta, the
pulmonary arteries and the adjacent parts of the great arteries, are called

windkessel vessels. With each pulse any given segment of such a vessel
distends to store a volume of blood. As it subsequently contracts back to

its original dimensions, it pushes blood on to the next segment. The name
windkessel (German for air chamber) has been given to these vessels and
their function because of the resemblance to the air-filled chambers that

similarly affect the velocity and pressure of fluids driven by pistons
through systems of pipes.
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D P 5 e 2x2 .

Furthermore, the myogenic (x3) and the neurogenic (x4)

activity constrict the vessels and resist the ¯ ow, while the

metabolic activity (x5) dilates the vessels and decreases its

resistance

D R 5 e 3x3 1 e 4x4 2 e 5x5 .

From the point of view of the capillary bed, where the cells

of the human body have direct access to the blood, the

peripheral ¯ ow consists of an in¯ ow 1, which is driven by

the heart through the arteries, and an out¯ ow 2 through

the veins, which is pumped by the pressure diŒerence

generated by the lungs

Ç
1 5 n ( D 1 0

R0
D R 2 1) ,

Ç
2 5 v (

1
R0

D P 2 2) . (30)

The constants n and v determine the ¯ ow dynamics.

5.4. The ¯ ow along a vessel

Above, we have considered the oscillations of the blood

¯ ow at a single point in the cardiovascular system. The

contribution of each process diŒers at diŒerent points of

the system. However, all ® ve characteristic frequencies

were found in diŒerent physiological signals and on

diŒerent sites along the vessel’ s network. Therefore, we

may assume that blood ¯ ows in the form of travelling

waves. The heart’ s contribution to the ¯ ow at each point

results not only from the in¯ uences of local regulatory

mechanisms, but also from the values of pressure and ¯ ow

along the entire system. Therefore, equations (28) and (29)

were rearranged [91]

Çx1 5 x1q1 2 y1 x 1 1 g 2x2 2 g 3x3 2 g 4x4 1 g 5x5 1

g 6

l

0
P (z , t) dz 1 g 7

l

0
(z , t) dz ,

Çy1 5 y1q1 1 x1 x 1 1 g 2y2 2 g 3y3 2 g 4y4 1 g 5y5 , (31)

Çx2 5 x2q2 2 y2 x 2 1 h 4x4 1 h 5x5 1 h 6

l

0
P (z , t) dz 1

h 7

l

0
(z , t) dz ,

Çy2 5 y2q2 1 x2 x 2 1 h 4y4 1 h 5y5 . (32)

Here, (z , t) is the ¯ ow at any point of the circulatory

system. It is generated by the heart, therefore

(0, t) 5 e 1x1(t). The pressure P is generated by the

lungs and P (0, t) 5 e 2x2(t) . We have assumed the ¯ ow in

the z direction, and l is a length in this direction. The

blood returns to the right atrium of the heart at a pressure

of 0 Pa , and at almost 0 Pa from the pulmonary vein to

the left atrium [92]. There, the value of P (l, t) becomes 0.

By analogy, we may assume the value of ¯ ow at this

boundary condition to be (l, t) 5 0.

The wave motion of the blood along the cardiovascular

system can be written as



 t
5 2 j 1

 P

 z
2 j 2x5 , j i > 0

 P

 t
5 2 ¹1



 z
1 ¹2x3 1 ¹3x4 , ¹i > 0, (33)

where j i , ¹i are control parameters.

The values of these control parameters in equations (31)±

(33) may diŒer with respect to the part of the system under

consideration: arterial, capillary or venous. The blood

pressure values are higher at the origin of the aorta and

lower at the entrance of the vena cava into the heart. The

arterial ¯ ow near the heart is dominated by the heart pump

oscillations, while on the way to the capillaries the

myogenic activity takes charge over the regulation of the

¯ ow. At the capillary bed the amplitude of oscillations of

the metabolic activity dominates.

The model was built to summarize the experimental

® ndings and known physiological facts. It still needs to be

evaluated, analytically and numerically, and further experi-

ments are also needed. With appropriate choice of

parameter values, we expect it to serve in obtaining the

initial conditions for locally oriented models, such as

described by Navier± Stokes equations. Moreover, equa-

tions for wave motion of the blood may reduce locally to

Navier± Stokes equations.

6. Outlook

On the way towards reaching an understanding of the

cardiovascular system, physics, mathematics, physiology

and clinical medicine meet under the wings of nonlinear

dynamics. Therefore, the current comprehension of the

physical and physiological properties of the processes

involved in the control of blood circulation has been

combined with experimental ® ndings in order to arrive at a

characterization of the system dynamics.

Processes on many diŒerent time scales and of widely

diŒerent structural complexity are re¯ ected in a single cycle

of blood through the system. On one hand, this fact makes

the understanding of the system di� cult. However, we have

shown that the system exhibits clear signatures of

deterministic dynamics. The same dynamic properties

characterize all signals generated by the system, regardless

of the measurement site, and are also preserved in time.

Therefore, the system can be treated as a single entity. This,

on the other hand, provides a simpli® cation that oŒers the

possibility of evaluating the microscopic and macroscopic

mechanisms together.
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Several methods of linear and nonlinear analysis have

been applied to extract the dynamics characterizing the

measured signals. Although an enormous development of

nonlinear dynamics has occurred during the last three

decades, much work remains to be done on the theory and

numerical methods for dealing with ® nite high-dimensional

systems. We believe that studying the physics of the

cardiovascular system may provide a motivation for further

progress in the ® eld. Its understanding is not only a

theoretical challenge, but may also provide useful diag-

nostic and predictive tools for this life-giving system.
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Abstract Functional alterations to the endothelial cells
of the vascular system may contribute to the improved
circulatory performance induced by physical condition-
ing. We evaluated microvascular reactivity to ionto-
phoretic application of acetylcholine (ACh) and sodium
nitroprusside (SNP) through the skin and blood perfu-
sion measurements in the same area using laser Doppler
¯owmetry. Whereas ACh acts on smooth muscle cells of
the vascular system via the production of vasodilator
substances from the endothelium, SNP is an endotheli-
um-independent vasodilator acting on vascular smooth
muscle cells directly. The study was performed using two
groups of subjects with di�erent levels of aerobic en-
durance, long distance runners competing at national
level (n � 9) and controls (n � 9). The subjects were

tested for 40 min on a treadmill before and after an
exercise test at 80% of their maximal oxygen uptake.
During stimulation by ACh cutaneous perfusion in-
creased to a higher level in the athletes than in the
controls (overall P < 0.05), whereas an acute period of
exercise abolished this di�erence (overall P > 0.6).
There was no signi®cant di�erence between the athletes
and the controls with respect to the SNP-induced in-
crease in cutaneous perfusion either before (P > 0.9) or
after (P > 0.9) exercise. The higher cutaneous perfusion
responses to stimulation with ACh in the athletes than in
the controls may support the hypothesis that regular
exercise modi®es the responsiveness of the cutaneous
endothelium. The di�erence in ACh-induced perfusion
and in unstimulated forearm perfusion between the two
groups was present only at rest. This ®nding indicated
that mechanisms were introduced during exercise, which
compensated for the lower endothelial sensitivity to
stimulation in the controls at rest.

Key words Acetylcholine á Cutaneous blood ¯ow á
Endothelium-dependent vasodilatation á Physical
exercise á Laser Doppler ¯owmetry

Introduction

Research on the mechanisms behind the improved cir-
culatory performance induced by physical conditioning
in humans has mainly focused on cardiac function,
pulmonary capacity and structural alterations of the
microvasculature (Blomquist and Saltin 1983; Johnson
1989). However, it is also possible that control of the
vascular system can be modi®ed by physical exercise.
One potential mechanism would be that repetitive va-
sodilatations induced by exercise sessions may produce
adaptive changes in the intrinsic responsiveness of the
vascular endothelium.

The properties of the vasodilatation of the endothelial
system can be assessed by stimulation with acetylcholine
(ACh). This method is based upon the novel discovery of
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Furchgott and Zawadzki (1980) that the rabbit aorta di-
lates in response to the application of ACh only in the
presence of an intact endothelium. Their experiments
have suggested the existence of a mediator di�using from
endothelial cells to vascular smooth muscle cells and
causing vasodilatation. Several years later it was discov-
ered that this ``endothelial-derived relaxing factor'' was
identical to nitric oxide (NO; Ignarro et al. 1987; Palmer
et al. 1987). This ACh stimulation has been used to
demonstrate impaired endothelium-mediated vasodila-
tation in diabetes mellitus, essential hypertension, hype-
rcholesterolaemia, heart failure, and atherosclerosis
(Drexler 1997; Andreassen et al. 1998).

Recent studies have demonstrated enhanced vascular
responsiveness to endothelium-dependent vasodilators
in skeletal muscle in exercise-trained subjects (Delp
1995; Kingwell et al. 1996), whereas the cutaneous re-
sponsiveness to endothelium-dependent vasodilators in
response to exercise has not been tested. Increased ¯ow
and the correspondingly increased shear stress to the
vessel wall have been found to be stimuli which elicit
vasodilatation in the resistance vessels of skeletal muscle
(Miller and Vanhoutte 1988; Koller and Kaley 1991).
From this discovery and with the knowledge that in-
creased core temperature during exercise results in an
increased thermoregulatory contribution to the perfu-
sion, we anticipated that adaptive changes induced by
physical conditioning could also be detected in the cu-
taneous vasculature.

The aim of the present study was to test the hy-
pothesis that physical conditioning enhances endothelial
responsiveness to vasodilators in human cutaneous
vasculature. The responsiveness to the endothelium-
dependent substance ACh delivered iontophoretically
through the forearm skin was compared with the
endothelium-independent vasodilator, sodium nitro-
prusside (SNP), in two groups of healthy, male subjects
of di�erent levels of aerobic conditioning. Blood perfu-
sion was recorded in the same area using the non invasive
technique of laser Doppler ¯owmetry (LDF).

Methods

Subjects

The subjects used in the experiment were nine male long-distance
runners (athletes) who had competed in national events for more
than 5 years. They were tested in June while undergoing intense
training [median 11.0 (range 8.5±17.0) hours a week; median 8.5
(range 5.0±11.0) times a week] and competing in at least one event
each week. Their training program during this period included
intense interval training. The subjects acting as controls comprised
nine healthy, less well-trained soldiers (controls) who performed
some physical activity [median 1.5 (range 0.5±7) hours a week;
median 1.5 (range 0.5±3.5) times a week]. The subjects had not
taken any medication during the week prior to the study. None of
the subjects were smokers. Exclusion criteria were a history of
cardiovascular disease or other illness. After being informed of the
design of the study they gave their written consent. The study was
approved by the local Ethics Committee.

Aerobic endurance level

The maximal oxygen uptake � _V O2max� was measured during run-
ning on a motor driven treadmill at 3° uphill gradient (Hermansen
1973) using the Sensor Medics oxygen analyser (MMC Horizon
System, USA). The oxygen uptake � _V O2� was measured at 4±5
di�erent submaximal levels, each level being measured for 4 min.
Heart rate was recorded continuously using an electro-cardiograph
(Sirekust 341, Siemens, Germany).

Laboratory procedure

All the subjectswere asked to refrain from strenuous exercise for 24 h
before the study to avoid the short-term e�ects of exercise. The
_V O2max test procedure was therefore performed at least 24 h prior to
the exercise test. Food intake before the exercise test was restricted to
a light meal 2 h prior to the exercise test. The LDF measurements
were carried out in a roomwith the temperaturemaintained constant
at 22 (21±23)°Cwith the subjects in a supine position.At least 20 min
were allowed for the subjects to become accustomed to the room
temperature and the situation before the LDF measurements were
made on the skin of the left forearm. Skin perfusion was measured
immediately before and from 15 min after the exercise test. Skin
temperature was measured using a digital skin thermometer (Fluke
2190, John Fluke, USA). The exercise test was performed on a
treadmill at 3° uphill gradient for 40 min at 80% of the subjects'
individual _V O2max after warming up for 10 min at 50% of their
_V O2max. The entire procedure is given in Table 1.

Plasma lactate

Before starting the exercise test and immediately after its ®nish blood
from antecubital veins was drawn with minimal stasis by repetitive
venipuncture using a 20-G needle and placed in pre-cooled plastic
tubes containing 3.8% sodium citrate in a 9:1 blood:anticoagulant
ratio. The blood was stored on ice (maximum 20 min) before cen-
trifugation (20 min at 22°Cand 1500 g) and the plasma sampleswere
stored in aliquots at ±70°C until further analysis.

Determination of packed cell volume, haemoglobin concentra-
tion and mean cell volume (MCV in ethylenediaminetetra-acetic
acid EDTA) anticoagulated blood were made on an automatic
analysing device (Coulter counter model S plus STKR, Coulter
Electronics, Inc., Fl., USA) in EDTA blood. The plasma volume
changes were determined according to an equation by which short-
term changes in plasma volume can be calculated from changes in
the PCV provided that no changes are observed in MCV (Van
Beaumont 1972). Plasma lactate concentrations after the exercise
test were adjusted for the changes in plasma volume observed after
exercise.

Table 1 The laboratory procedure. _V O2max Maximal oxygen up-
take, LDF laser Doppler ¯owmetry, ACh-b iontophoresis with
acetylcholine (ACh) before running, SNP-b iontophoresis with
sodium nitroprussid (SNP) before running, ACh-a iontophoresis
with ACh after running, SNP-a iontophoresis with SNP after
running, _V O2;50%; _V O2;80% 50% and 80% of _V O2max

Day 1:
_V O2max-test
Day 3 or later:
22-min resting LDF
22-min ACh-b
22-min SNP-b
3-min blood sampling
10-min warming up at _V O2;50%

40-min exercise test at _V O2;80%

3-min blood sampling
22-min ACh-a
22-min SNP-a
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Laser Doppler ¯owmetry

The principles of LDF have been thoroughly described elsewhere
(Nilsson et al. 1980): LDF gives a semiquantitative assessment of
microvascular blood perfusion, which is expressed in arbitrary
units (a.u.). The LDF measurements from the skin re¯ect blood
¯ow in capillaries, arterioles, venules and dermal vascular plexa;
they have also been shown to re¯ect a minor nutritive and a major
thermoregulatory part of the perfusion (Bollinger et al. 1991). A
commercially available monitor was used for LDF (MBF 3D,
Moor Instruments, Axminster, Devon, UK). A sampling frequency
of 40 Hz and a time constant of 0.1 s were selected. The LDF
measurements were obtained with two ®bers, using an optic probe
(P10A, Moor Instruments, England), and the data were stored on a
personal computer.

Iontophoresis

The technique of iontophoresis allows polar drugs to cross the skin
using a small, direct current. It has been shown to be possible to
assess reactivity of the microvascular system when blood perfusion
is being measured simultaneously in the same area (MuÈ ller et al.
1987; Westermann et al. 1988; Andreassen et al. 1998).

A combined probeholder, for iontophoresis and perfusion
measurement, was ®xed with double-sided adhesive tape on the
volar side of the right forearm (Fig. 1) after the skin had been
cleaned with isopropyl alcohol and left to dry in the air. The perspex
probeholder had a small chamber for deposition of the test solutions
which was then in direct proximity to the laser Doppler probe. A
battery powered constant current stimulator (MIC 1, Moor In-
struments Ltd, England) was used to provide a direct current for the
drug iontophoresis. The active electrode was made of platinum, and
charged according to the active ions of the drug. Quantities of 1%
solutions of ACh (E. Merck, Germany) and SNP (E. Merck, Ger-
many) were used. For ACh anodal current was used to transfer the
cation (ACh+) during iontophoresis, and for SNP cathodal current
was applied to transfer the anion as has been described by MuÈ ller et
al. (1987) and Westermann et al. (1988). A reference electrode was
attached to the wrist of the right arm of the subjects.

The doses of drugs delivered were directly proportional to the
total charge in millicoulombs which migrates through the skin
surface, determined from the product of the constant current
measured in milliampers and the duration of current ¯ow in sec-
onds. By applying small currents of brief duration, a transfer of
vasoactive drugs into the epidermis beneath the chamber was ac-
complished. Drug doses were altered by varying the amount or the
time of the current. To avoid current-induced stimulation of local
sensory nerves, currents higher than 200 mA or total charges
greater than 8 mC were avoided (Westermann et al. 1988). Based
on pilot studies and earlier recommendations (Westermann et al.

1988) we made dose-response curves for both ACh and SNP, using
charges of 0.75 mC (75 mA for 10 s), 1.5 mC (150 mA for 10 s), 3.0
mC (150 mA for 20 s) and 6.0 mC (200 mA for 30 s) with the
response being measured for 300 s after each charge of the ion-
tophoresis (Fig. 2a, b). These charges produced a stepwise increase
in laser Doppler perfusion, reaching a saturation level at 6.0 mC
(Fig. 2a, b). We subtracted the value of the perfusion during the
unstimulated state from the response values obtained during ion-
tophoresis of di�erent doses.

For each subject ®ve curves were recorded. One curve was
obtained during 22 min of rest, and four curves were obtained
during iontophoresis. Calibration of the laser Doppler equipment
was checked before measurements on each of the test subjects. The
di�erent doses of the same substance (ACh or SNP) were applied at
the same location. The test positions for ACh and SNP were sep-
arated by at least 5 cm. The chamber used in all the experiments
allowed a skin area of 0.64 cm2 to be treated.

Statistical analysis

Data are illustrated either as group median with range, or as box
plots. The ®ve horizontal lines at the boxes are the 10, 25, 50, 75,
and the 90th percentiles. Values above or below the 10th and 90th
percentile are represented as data points. A two-way analysis of
variance (ANOVA; repeated measure design) was used to compare
the skin perfusion data between the athletes and the controls. The
repeated measures were performed on the data after transforma-
tion to obtain normal distribution and equal variance in the two
groups. When di�erences were obtained, post-hoc analyses were
performed using the Mann-Whitney test for non-parametric com-
parisons between the two groups at the di�erent doses. The Mann-
Whitney test for comparison of independent samples was also used
to evaluate di�erences between the athletes and the controls in

Fig. 1 Iontophoresis procedure on human forearm: arrangement of
laser Doppler ¯owmeter probe holder and electrode for evoking
iontophoretic vasodilatation responses

Fig. 2 Laser Doppler perfusion of the response to increasing
concentrations of acetylcholine (a) and sodium nitroprussid (b). The
dose-response curves were made by using the charges of 0.75 mC, 1.5
mC, 3.0 mC, and 6.0 mC. The response measuring period for each
dose was 300 s
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anthropometric and performance data. Statistically signi®cant
di�erences were de®ned as P < 0.05.

Results

Anthropometric and performance data

Anthropometric and performance data of both groups
are summarized in Table 2. We found a lower resting
heart rate and mean anterial pressure in the athletes
compared to the controls, whereas no di�erence in skin
temperature was seen. The lactate concentration was
higher in the controls than in the athletes after exercise.

Basal perfusion in the unstimulated state
at rest and after exercise

Before exercise perfusion of the forearm skin was sig-
ni®cantly higher in the athletes than in the controls
[median 5.3 (range 3.6±6.9) vs median 3.1 (range 2.3±
4.5), P < 0.005]. Both groups had a higher skin perfu-
sion after exercise, compared to the values before
exercise (P < 0.05). After exercise there were no signi-
®cant di�erences between the groups either before the
iontophoresis with ACh [median 14.5 (range 6.6±44.0) vs
median 10.0 (range 4.3±15.4) P > 0.3] or before the
iontophoresis with SNP [median 6.9 (range 4.0±15.5) vs
median 5.2 (range 4.8±7.0), P > 0.3].

E�ects of ACh

Iontophoresis with ACh before standardized exercise
induced a signi®cant dose-dependent increase in skin
perfusion in both the athletes and the controls
(P < 0.05 for both groups; Fig. 3a). This ACh-induced
increase in skin perfusion was higher in the athletes than
in the controls (overall P < 0.05), giving a signi®cant
di�erence for a dose of 0.75 mC (P < 0.05). At a dose
of 1.5 mC P equalled 0.08. Iontophoresis with ACh after
standardized exercise produced a signi®cant dose-
dependent increase in skin perfusion in both athletes and
controls (P < 0.03 for both groups), but there was no
signi®cant di�erence between the two groups (overall
P > 0.6) (Fig. 3b).

E�ects of SNP

A signi®cant dose-dependent increase in skin perfusion
during iontophoresis with SNP was demonstrated in
both the athletes and the controls (P < 0.03 for both
groups), but there was no signi®cant di�erence between
the two groups (overall P > 0.9; Fig. 4a). Also after
exercise, a dose-dependent increase in skin perfusion was
demonstrated in both the athletes and the controls
(P < 0.03 for both groups). There was no signi®cant
di�erence between the two groups (overall P > 0.9;
Fig. 4b).

Table 2 Anthropometric and performance data of athletes and controls. _V O2max Maximal oxygen uptake, _V O2;80%, 80% of _V O2max,
MAP mean arterial blood pressure, DPV plasma volume changes in response to running

Athletes
(n = 9)

Controls
(n = 9)

Median Range Median Range

Age (years) 26 18±32 20 19±21a

Body mass (kg) 76 70±79 75 70±90
Height (cm) 187 171±192 180 176±197
Heart rate (beats á min)1)
Pre-exercise 51 44±60 57 51±72a

15-min post-exercise 63 52±78 95 78±105b

At _V O2max 189 181±194 199 193±212b

MAP (mmHg)
Pre-exercise 106 87±113 91 79±100a

15-min post-exercise 92 82±109 90 80±95
Skin temperature (°C)
Pre-exercise 33.1 32.3±34.9 33.4 32.1±34.4
Post-exercise 33.9 32.3±35.3 33.7 33.2±34.1

_V O2max (ml á kg)1 á min1) 68.9 62.0±73.0 51.5 44.4±61.4c

Running velocity at
_V O2;80% (m á min)1) 227 217±243 177 143±198c

DPV (%) )14.3 )14.6 to )14.3 )13.4 )15.7 to )1.9
Lactate (mmol á l)1)
Pre-exercise 0.7 0.3±1.0 0.5 0.3±0.7
Post-exercise 1.9 0.7±5.6 3.2 1.0±6.2

aP < 0.05, bP < 0.005, cP < 0.0001
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Discussion

Assessing endothelium-dependent vasodilatation in
forearm skin following iontophoresis with ACh, the
present data indicated increased responsiveness of the
vascular endothelium in the athletes at rest, compared to
the less well-trained controls. Endothelium-independent
responses following iontophoresis with SNP, however,
were similar to those of the control subjects.

From comparable levels of perfusion in unstimulated
skin graded iontophoretic administration of ACh and
SNP resulted in successive increases in perfusion in both
groups. The observation that ACh-induced skin perfu-
sion responses at rest were signi®cantly higher in the
athletes than in the controls was consistent with our
hypothesis that the endothelium of the microvascular
system becomes more susceptible to stimulation as aer-
obic capacity increases. These results are in agreement
with a recent study using venous occlusion pletysmo-
graphy in humans (Kingwell et al. 1996), in which intra-
arterial infusion of ACh produced higher perfusion
responses in athletes than in controls. Enhanced ACh-
induced vasodilatation after endurance training has also
been demonstrated in the thoracic aorta and pulmonary
artery of the rabbit (Chen and Li 1993), as well as in the
abdominal aorta of the rat (Delp et al. 1993). Recently
ACh-induced vasodilatation in human skin has been
shown to correlate closely to peak _V O2 in heart trans-
plant recipients (Andreassen et al. 1998).

The exact mechanisms underlying the ACh-induced
vasodilatation in human cutaneous vasculature may
di�er from that observed in other vessels. Whereas ACh
facilitates vasodilatation indirectly via the conversion of
L-arginine to NO in the vascular endothelium of the
aorta and arterioles (Moncada et al. 1991), ACh in the
cutaneous circulation may in addition induce endothe-
lium-dependent vasodilatation via other pathways. An
in vitro study of human subcutaneous resistance vessels
has demonstrated that both NO and prostaglandins may
be involved in ACh-induced relaxation (Richards et al.
1990). In addition, Morris and Shore (1996) have con-
cluded in their study of the mechanisms underlying
ACh-induced responses of cutaneous blood ¯ow that
mediators other than prostaglandins and sensory nerve
activation may be involved in skin perfusion following
iontophoresis with ACh. Kreidstein et al. (1992) in their
study of skin ¯aps have demonstrated the presence of
endothelium-dependent and endothelium-independent
vasodilatation. They have convincingly shown that the
vascular relaxation e�ect of ACh was signi®cantly re-
duced by inhibitors of NO synthesis; however, the ACh-
induced vasodilatation was not completely blocked. To
what extent adenosine, prostaglandins, endothelium-
dependent hyperpolarization factor and other sub-
stances contribute to the ACh-induced vasodilatation in
the cutaneous vasculature remains to be investigated.

To evaluate whether physical conditioning makes
smooth muscle cells of the vascular system more sensi-

Fig. 3 Laser Doppler perfusion in response to iontophoretic applica-
tions of acetylcholine (ACh) before (a) and after (b) running in athletes
and controls. The ®ve horizontal lines on the box show the 10, 25, 50,
75, and the 90th percentiles. The values above or below the 10th and
90th percentile are represented as data points. * P < 0.05 (ANOVA,
repeated measure design)

Fig. 4 Laser Doppler perfusion in response to iontophoretic applica-
tions of sodium nitroprussid (SNP) before (a) and after (b) running in
athletes and controls. The ®ve horizontal lines on the box show the 10,
25, 50, 75, and the 90th percentiles. The values above or below the
10th and 90th percentile are represented as data points
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tive to vasodilators, we have compared vasodilatation
induced by SNP in athletes and controls. The SNP has
been shown to evoke vascular relaxation by directly in-
creasing guanosine 3¢,5¢-cyclic monophosphate in vas-
cular smooth muscle cells (Rapoport et al. 1983). Our
data showed almost identical SNP-induced increases in
skin perfusion in the two groups both at rest and after
exercise. This would indicate that the enhanced ACh-
induced skin perfusion before exercise was not due to
enhanced sensitivity of vascular smooth muscle cells to
vasodilators, but rather to increased levels of endothelial
factors (most probably NO) reaching vascular smooth
muscle cells. This is in agreement with previous studies
on animals (Delp et al. 1993) and humans (Kingwell
et al. 1996), in which a similar sensitivity to SNP was
found at rest for both trained and untrained subjects.

Our results demonstrated enhanced ACh-induced
perfusion in athletes compared to controls at rest. No
such di�erences were, however, observed for the re-
sponses to SNP. Increased ¯ow and correspondingly
increased shear stress to the vessel wall have been shown
to be stimuli which elicit vasodilatation in the resistance
vessels of skeletal muscles (Miller and Vanhoutte 1988;
Koller and Kaley 1991). We hypothesized that the
increased muscle blood ¯ow during exercise could be
detected indirectly in the perfusion of forearm skin, since
increased core temperature provides an increased ther-
moregulatory contribution to the perfusion. The skin
temperature did not di�er between the two groups. The
observed di�erence in ACh-induced perfusion at rest
therefore would indicate a true di�erence in the sensi-
tivity of the endothelial cells to inducing vasodilatation,
probably as a result of repetitive increases in blood ¯ow
during training sessions.

We could ®nd no data after exercise which were
comparable to the ACh-responses obtained before ex-
ercise. However, a previous study has demonstrated a
minor contribution of NO to exercise-induced vasodi-
latation (Gilligan et al. 1994). In muscles, an increased
concentration of metabolic products, altered mechanical
forces and changes in the neurohumural milieu, have all
been postulated to be important in the development of
adaptations in the endothelium which occur with exer-
cise training (Delp 1995). In the present study we dem-
onstrated higher plasma lactate concentrations in the
controls than in the athletes after exercise. We therefore
speculate that the smaller cutaneous responses to the
endothelium-dependent vasodilator ACh in the controls
may have indicated an inadequate capacity of the en-
dothelium to induce relaxation of vascular smooth
muscle in the small arterioles of exercising muscle, which
led to hypoperfusion and increased lactate concentra-
tions.

To what extent lactate or other substances in the
plasma contribute to the exercise-induced vasodilatation
in the cutaneous vasculature remains unknown. How-
ever, there may be factors which make the vessels more
sensitive to vasodilator stimuli after repetitive periods of
physical exercise. The ®nding that ACh-induced skin

perfusion at rest is signi®cantly higher in athletes than in
controls may therefore have relevance not only to the
understanding of exercise physiology, but it may also
have therapeutic implications for diseases with impaired
endothelium-dependent vasodilatation, such as diabetes
mellitus, hypertension, hypercholesterolaemia, athero-
sclerosis and heart failure. Regular exercise may be
recommended for su�erers of these diseases as a non-
pharmacological approach to restore endothelium-de-
pendent dilatation.

Study limitations

It has been suggested that vasodilatation obtained by
iontophoresis with ACh vehicle and SNP vehicle may
also stimulate local sensory nerves (Morris et al. 1996;
Andreassen et al. in press). However, a study using the
same dose-response curve as in the present study has
demonstrated that the drug vehicle had signi®cant in-
¯uence on increases in skin perfusion from the third
iontophoresis of ACh and from the second iontoph-
oresis of SNP (Andreassen et al. 1998). Thus, the ob-
served di�erence between the athletes and the controls in
the present study represented a true di�erence since the
di�erence was observed at the lowest dose of ACh.

We chose to test the subjects at 80% of their indi-
vidual _V O2max, assuming that the exercise intensity
would then be equal in the two groups. This standard-
ization resulted in a lower running speed in the controls
compared to the athletes. Even though we made this
standardization, we found a higher plasma lactate con-
centration after exercise in the controls than in the
athletes. However, the di�erences demonstrated between
the two groups after exercise would probably have been
even more pronounced if they had been tested at the
same speed. In cross-sectional study designs one also has
to bear in mind potential di�erences in genetic, dietary
and other life-style factors between athletes and con-
trols, which may alter endothelial function.

In conclusion, physical conditioning resulted in en-
hanced endothelium-dependent vasodilatation in the
cutaneous vasculature, as demonstrated by the higher
ACh-induced perfusion among the athletes compared to
the controls. The unaltered response to SNP showed
that di�erences in vascular smooth muscle responsive-
ness for vasodilatation did not account for this di�er-
ence. The di�erence in ACh-induced perfusion and in
forearm perfusion in the unstimulated state between the
two groups was present only at rest. This ®nding would
indicate that mechanisms are introduced during exercise,
which compensate for the lower endothelial sensitivity to
stimulation as seen in the controls at rest. The observed
di�erence between the groups illustrates the applicability
of cutaneous LDF measurements to investigations such
as these.

Acknowledgements The authors are indebted to Prof. Harald Ref-
sum, head of the Department of Clinical Physiology at UllevaÊ l

35



Hospital where all the measurements were made, for his stimulating
interest. The excellent technical assistance of Anne Edvardsen and
Karin Lia, and the support with the statistical analysis by Tom
WilsgaÊ rd, are gratefully acknowledged. We would also like to
thank Moor Instruments, England, for providing the devices used
in this study, with special thanks to Rodney Gush. Aneta Stefan-
ovska was supported by the Slovenian Ministry of Science and
Technology and by the Alexander von Humboldt Foundation, and
Hebe DeÂ sireÂ c Kvernmo was supported by the Norwegian Research
Council for Science and Humanities.

References

Andreassen AK, Kvernebo K, Jùrgensen B, Simonsen S, Kjekshus
J, Gullestad L (1998) Exercise capacity in heart transplant re-
cipients: relation to impaired endothelium-dependent vasodila-
tation of the peripheral microcirculation. Am Heart J 136:320±
328

Blomquist CG, Saltin B (1983) Cardiovascular adaptations to
physical training. Annu Rev Physiol 45:169±189

Bollinger A, Ho�mann U, Franzeck UK (1991) Evaluation of ¯ux
motion in man by the laser Doppler technique. Blood Vessels
28:21±26

Chen HI, Li HT (1993) Physical conditioning can modulate en-
dothelium-dependent vasorelaxation in rabbits. Arterioscler
Thromb 13:852±856

Delp MD (1995) E�ects of exercise training on endothelium-de-
pendent peripheral vascular responsiveness. Med Sci Sports
Exerc 27:1152±1157

Delp MD, McAllister RM, Laughlin MH (1993) Exercise training
alters endothelium-dependent vasoreactivity of rat abdominal
aorta. J Appl Physiol 73:1354±1363

Drexler H (1997) Endothelial dysfunction: clinical implications.
Prog Cardiovasc Dis 30:287±324

Furchgott RF, Zawadzki JW (1980) The obligatory role of endo-
thelial cells in the relaxation of arterial smooth muscle by ace-
tylcholine. Nature 288:373±376

Gilligan DM, Panza JA, Kilcoyne CM, Waclawiw MA, Casino
PR, Quyyumi AA (1994) Contribution of endothelium-derived
nitric oxide to exercise-induced vasodilatation. Circulation
90:2853±2858

Hermansen L (1973) Oxygen transport during exercise in human
subjects. Acta Physiol Scand [Suppl] 339:1±104

Ignarro, LJ, Byrns RE, Buga GM, Wood KS (1987) Endothelium-
derived relaxing factor from pulmonary artery and vein pos-

sesses pharmacological and chemical properties identical to
those of nitric oxide radical. Circ Res 61:866±879

Johnson JM (1989) Circulation to skeletal muscle. In: Patton HD,
Fuchs AF, Hille B, Scheer AM (eds) Textbook of physiology.
Saunders, New York. pp 887±897

Kingwell BA, Tran B, Cameron JD, Jennings GL, Dart AM (1996)
Enhanced vasodilation to acetylcholine in athletes is associated
with lower plasma cholesterol. Am J Physiol 270:H2008±H2013

Koller A, Kaley A (1991) Endothelial regulation of wall shear
stress and blood ¯ow in skeletal muscle microcirculation. Am J
Physiol 260:H862±H868

Kreidstein ML, Pang CY, Carlsen LN, Xu N (1992) Evidence for
endothelium-dependent and endothelium-independent vasodi-
lation in human skin ¯aps. Can J Physiol Pharmacol 70:1208±
1216

Miller VM, Vanhoutte PM (1988) Enhanced release of endotheli-
um-derived factor(s) by chronic increases in blood ¯ow. Am J
Physiol 255:H446±H451

Moncada SR, Palmer MJ, Higgs EA (1991) Nitric oxide: physiol-
ogy, pathophysiology, and pharmacology. Pharmacol Rev
43:109±142

Morris SJ, Shore AC (1996) Skin blood ¯ow responses to the
iontophoresis of acetylcholine and sodium nitroprusside in
man: possible mechanisms. J Physiol 496:531±542

MuÈ ller PH, Keller R, Imhof P (1987) Laser Doppler ¯owmetry, a
reliable technique for measuring pharmacologically induced
changes in cutaneous blood ¯ow? Methods Find Exp Clin
Pharmacol 9:409±420

Nilsson GE, Tenland T, OÈ berg PAÊ (1980) Evaluation of a laser
Doppler ¯owmeter for measurement of tissue blood ¯ow. IEEE
Trans Biomed Eng 27:597±604

Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release
accounts for the biological activity of endothelium-derived re-
laxing factor. Nature 327:524±526

Rapoport RM, Draznin MB, Murad F (1983) Endothelium-de-
pendent relaxation in rat aorta may be mediated through cy-
clic GMP-dependent protein phosphorylation. Nature
306:174±176

Richards NT, Poston L, Hilton L (1990) Cyclosporin A inhibits
endothelium-dependent, prostanoid-induced relaxation in hu-
man subcutaneous resistance vessels. J Hypertens 3:159±163

Van Beaumont W (1972) Evaluation of hemoconcentration from
hematocrit measurements. J Appl Physiol 31:712±713

Westerman RA, Widdop RE, Hannaford J, Low A, Roberts RGD,
Kent P, Sideris K, Yip T, Hales JRS, Stephens FRN (1988)
Laser Doppler velocimetry in the measurement of neurovas-
cular function. Austr Phys Eng Sci 11:53±65

36



http://www.lancs.ac.uk/depts/physics/research/nbmphysics/ljubljana/people/aneta/Valcki_Maja.pdf[03/06/2009 16:57:29]

Embedded Secure Document

The file
http://www.lancs.ac.uk/depts/physics/research/nbmphysics/ljubljana/people/aneta/Valcki_Maja.pdf is a
secure document that has been embedded in this document. Double click the pushpin to view.




Article No. bu980047
Bulletin of Mathematical Biology (1998) 60, 919–935


Wavelet-based Analysis of Human Blood-flow Dynamics
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To analyze signals measured from human blood flow in the time-frequency do-
main, we used the wavelet transform which gives good time resolution for high-
frequency components and good frequency resolution for low-frequency compo-
nents. Five characteristic frequency peaks, corresponding to five almost periodic
rhythmic activities, were found on the time scale of minutes. These oscillations
were characterized by time and spatial invariant measures. The potential of this
approach in studying the blood-flow dynamics was illustrated by revealing dif-
ferences between the groups of control subjects and athletes.


c© 1998 Society for Mathematical Biology


1. INTRODUCTION


Cardiovascular control mechanisms manifest themselves through rhythmic ac-
tivities (Hyndman et al., 1971; Akselrod et al., 1981). Spectral analysis of such
rhythms may, therefore, provide an essential contribution to the understanding
of the physiological properties of cardiovascular control mechanisms. The be-
ginning of the application of this analysis to cardiovascular functions dates back
to the early 1970s. Since then, spectral analysis has been widely applied, espe-
cially to the arterial blood pressure and heart-rate variability (HRV) signals (see
Di Renzo et al. (1995) and references therein). Three peaks were found in the
power spectrum of HRV, one centered at the respiratory frequency, the other two
typically around 0.1 and 0.05 Hz. The same peaks were found in the spectrum of
the blood-pressure signal together with the peak at the heart-beat frequency. The
frequency analysis of peripheral blood flow, on a time scale of minutes, revealed
five characteristic frequencies (Stefanovska, 1992). Apart from those found in
the blood pressure and HRV signals, a frequency around 0.01 Hz was observed.


Spectral analyses reported in the literature were commonly performed using
Fourier or autoregressive methods. The use of Fourier tools for signals which
contain time-varying characteristic frequencies results in broadened bands around
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characteristic frequencies. The autoregressive spectrum estimation is sensitive to
the order of the model. Additionally, it is doubtful whether the complex process
of cardiovascular control can be expressed in terms of an autoregressive model.


The characteristic frequencies in the signals of cardiovascular origin continually
change due to naturally occurring physiological perturbations. To capture those
changes, methods in the time-frequency domain should be used. The cardio-
vascular signals consist of notably different features in both time and frequency
and, typically, the high-frequency components have a shorter time span than the
low-frequency components. For such signals, the wavelet analysis was originally
introduced (Morlet, 1983).


We compared the amount of information about the blood flow which could be
extracted from the measured signal using the wavelet transform with the infor-
mation extracted from the same signal through a static analysis. Measurements
were performed on two groups. Our aim is to show that (i) additional differences
between the groups can be found by using the dynamic point of view, and (ii)
some insight into the physiological background of the differences can be gained.


The background of the wavelet transform is presented along with the results
of applying this transform to signals measured from human blood flow. We also
introduce several measures which characterize the dynamics in the time-frequency
domain and test them for time and spatial invariance. These measures enable us
to compare the blood-flow dynamics of control subjects and athletes.


2. TIME-FREQUENCY ANALYSIS BY WAVELET TRANSFORM


A physical signal may be presented in either time or frequency domains. The
Fourier transform and its inverse connect both domains (Fourier, 1888). In the
Fourier analysis, the function f (t) is reproduced as a superposition of exponen-
tials ejωt for all ω. These exponentials have sharp peaks in the frequency domain,
but are spread over all time. Local variations in time cannot be reproduced using
such non-local basis functions.


To overcome this problem, time-frequency analysis was introduced (Gabor,
1946). The signal is divided into windows of finite duration and the frequency
content of each window is then analyzed. Precise measurements of time and
frequency are fundamentally incompatible since frequency cannot be measured
instantaneously. To detect a frequency, the signal must be observed over at least
one period of this frequency. Hence, we cannot say exactly at which instant in
time the signal had this frequency. This problem is known as the uncertainty
principle. The time and frequency resolutions are determined by the choice
of window length. Narrow windows give good time resolution, while wide
windows are needed for good frequency resolution and detection of low-frequency
components.


In order to achieve good time resolution for high frequencies and good fre-
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quency resolution for low frequencies in a single transform, the wavelet transform
was introduced (Morlet, 1983; Grossmann and Morlet, 1984). Within this trans-
form, the window length is adjusted to the frequency currently being analyzed—
slow events are examined with a long window, whilst a shorter window is used
for fast events.


The continuous wavelet transform of a signal f (t) is defined as


f̃ (s, t) =
∫ ∞
−∞


9̄s,t(u) f (u)du. (1)


The family of basis functions 9s,t is built by scaling and translating a selected
function—the mother wavelet ψ(u)


9s,t = |s|−1/2ψ
(u− t


s


)
. (2)


Factor s stretches (s > 1) or compresses (s < 1) the mother wavelet ψ(u) and
thus determines the scale on which the function is observed. The time localization
of events on a given scale s is achieved by looking at the signal through translated
versions of ψ(u). To detect the frequency content in a given time interval, the
mother wavelet ψ(u) must be well concentrated in both time and frequency.


From the wavelet transform, the energy density of the signal in the time-scale
plane, or a scalogram, is obtained as


ρ(s, t) = C−1|s|−2 | f̃ (s, t)|2 (3)


(Kaiser, 1994), the value of C is determined by the shape of the mother wavelet.


2.1. The Morlet wavelet. The Morlet wavelet is a Gaussian function, modulated
by a sine wave. Using the Gaussian window, one can achieve the best time-
frequency localization within the limits given by the uncertainty principle. That
is why we have chosen the Morlet wavelet for analyzing cardiovascular dynamics,
where changes in both time and frequency are to be detected.


In the time domain, the Morlet wavelet is written as


ψ(u) = 1
4
√
π


(
e−iω0u − e−ω


2
0/2
)
e−u2/2. (4)


The choice of ω0 is a compromise between localization in time and in frequency.
For smaller ω0 (ω0 = 1 in Fig. 1), the shape of the wavelet favors localization
of singular time events, whilst for larger ω0 (ω0 = 5 in Fig. 1) more periods of
the sine wave in the window improve the frequency localization. Often ω0 is
chosen so that the ratio of the highest and the second highest maximum of ψ is
approximately 1


2 , i.e., ω0 = π [2/ ln 2]1/2 ≈ 5.3364 . . . (Daubechies, 1992). For
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Figure 1. The real part of the Morlet wavelet for ω0 = 1 (broken line) and ω0 = 5 (solid
line).
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Figure 2. The Morlet wavelet in time (a and c) and frequency domains (b and d) for
scales s= 1 (a and b) and s= 2 (c and d).
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this value of ω0, the value of the second term in equation (4) is so small that it
can be ignored in practice, and a simplified expression for the Morlet wavelet in
the time domain is


ψ(u) = 1
4
√
π


e−iω0ue−u2/2. (5)


The corresponding wavelet family consists of Gaussians, centered at time t with
standard deviations s.


Two members of the family are presented in Figs 2(a) and 2(c). Figures 2(b)
and 2(d) represent the same functions in the frequency domain. Here we have
Gaussians with a central frequency ω = ω0/s and a standard deviation of s−1.
Therefore, the wavelet transform at a given scale s can also be interpreted as
band-pass filtering, giving an estimation of the contribution of the frequencies in
this band. For the Morlet wavelet, the relation between the scale and the central
frequency is


ω = ω0


s
(6)


and the frequency resolution changes with frequency, so that 1ω/ω = 1/ω0.


3. WAVELET TRANSFORM OF BLOOD-FLOW SIGNALS


The blood flow was measured using a non-invasive technique based on laser
light and the Doppler principle which allows for continuous recordings (Stern,
1975). A laser Doppler flow meter MBF 3D, MOOR Instruments, Millway,
England, was used. Signals were recorded for 20 min, sampled at 40 Hz.


3.1. Time-scale presentation.We are interested in studying the dynamics within
one cycle of the blood through the body. It is known that, on average, the blood
returns to the heart in approximately 1 min; this represents the lowest time scale.
The heart rhythm is the fastest physiological rhythm in the system and therefore
determines the upper time scale of our interest. Before applying the wavelet
transform, the trend was removed from the signal by a moving-average filter. The
time constant of 100 s was chosen to remove very slow events and movements.
Additionally, the signals were resampled to 5 Hz.


To obtain the energy density in the time-scale plane, an approximation of the
continuous wavelet transform was calculated using the Morlet mother wavelet.
Figure 3 is a three-dimensional plot of the absolute value of the wavelet transform
of the blood flow, measured on the right hand. In this figure the scale (or
frequency) axis is logarithmic, whereas time is plotted on a linear scale for
clearer presentation.
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Figure 3. The absolute value of the wavelet transform of the blood flow signal measured
on the right hand. The transform was obtained using the Morlet wavelet with ω0 = 2π .


By choosing ω0 = 2π , a simple relation between scale and frequency was
obtained f = 1/s. This is a reasonable choice for ω0, since we prefer to detect
the frequency content of the signal to isolated time events. The choice ω0 and
the frequency limits defined from physiological knowledge determine the limits
for the scale smin = 0.5 and smax = 200. When scale s = 1, the window length
is around 6 s (Fig. 1). However, with the scale s = 100, the window length
is 600 s. Given that the total length of the recording is 1200 s, the problem of
boundary points may affect the result at large scales. However, due to the shape
of the Gaussian window, their relatively small weights reduce the influence of
boundary points. Therefore, around 800 s of the signal from its middle part can
be visualized in the time-scale plane. One must bear in mind that points outside
this time also affect the presented results.


Some peaks are obvious from the three-dimensional plot—those around 1 and
0.1 Hz for example—whilst others are harder to recognize. To improve the
picture, two additional perspectives of the transform are presented in Fig. 4: the
local maxima and the values averaged over all times—the average scalogram.


The plot of local maxima shows the time variations of the characteristic peaks,
but gives no information regarding their height. On the other hand, the average
scalogram gives the estimation of the height of the peaks. However, the infor-
mation about time is lost in this case and the peaks may therefore be broadened.
These two plots thus complement each other.


We must keep in mind that we are dealing with a linear method which detects
linear combinations of characteristic frequencies unless their magnitude is very
small. In a system with more characteristic frequencies such as ours, it is some-
times difficult to recognize these linear combinations and separate them from true
characteristic frequencies.


From Figs 3 and 4, five characteristic peaks can be recognized on the time
scale of minutes.
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Figure 4. The local maxima (upper plot) and average values (lower plot) of the wavelet
transform, presented in Fig 3.


3.1.1. The peak around 1 Hz. The peak at 0.97 Hz belongs to the heart rate.
This was shown by comparing the scalogram of the blood-flow signal with the
scalogram of the simultaneously measured electric activity of the heart (Bračič
and Stefanovska, 1998b).


3.1.2. The peak around 0.3 Hz. The next peak at 0.27 Hz results from res-
piratory activity. The origin of this peak becomes evident if the scalogram of
simultaneously measured excursions of the lungs due to respiration activity is
examined.


3.1.3. The peak around 0.1 Hz. It has been hypothesized that the peak around
0.1 Hz, 0.13 Hz in our case, is associated with blood-pressure regulation (Akselrod
et al., 1981; Kitney et al., 1985). This peak was found in both the HRV and the
blood-pressure signals. The smooth-muscle cells in the vessel walls respond con-
tinually to the changes in introvascular pressure, which is known as the myogenic
response (Jonson, 1991). Therefore, this intrinsic rhythmic activity of the ves-
sels, caused by the pacemaker cells in the smooth muscles of their walls, is called
myogenic activity.
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3.1.4. The peak around 0.04 Hz. A peak in the region between f ≈ 0.03
Hz and f ≈ 0.04 Hz has also been found in blood-pressure and HRV signals
by several authors (Di Renzo et al., 1995). In humans, Kastrup et al. (1989)
demonstrated that this peak disappeared completely after denervation, both after
local and ganglionic nerve blockade and after sympathectomy. Thus one may
conclude that this rhythm results from the neurogenic activity.


3.1.5. The peak around 0.01 Hz. The fifth peak, found in the blood-flow
signal, lies around f ≈ 0.013 Hz. This peak has been previously observed in
blood-flow signals using the Fourier analysis (Stefanovska, 1992), and also in the
HRV signal (Bračič and Stefanovska, 1998a). The main reason for this peak not
being revealed by other authors is that they analyzed shorter signals, up to some
minutes long, and used Fourier transform and autoregressive methods which have
bad low-frequency resolution. The wavelet approach, on the other hand, gives
good resolution even for time-varying low frequencies. We hypothesize that
this peak corresponds to metabolic activity—the rhythmic regulation of vessel
resistance to the blood flow initiated by concentrations of metabolic substances
in the blood.


3.2. Characterization of the dynamics.The three-dimensional plot of the wave-
let transform comprises more information than we are able to process and com-
pare. Even when some differences are obvious from the three-dimensional plot—
or more likely the average scalogram—it is difficult to use such visual tools for
comparing two groups of subjects.


If the wavelet transform is to be used for comparing several signals, it is very
convenient to have a quantitative measure that can be used for further statistical
evaluation. In the following sections, four such measures will be presented.


3.2.1. Average energy content. As we have seen in equation (3), the physical
quantity behind the scalogram is the energy density. Therefore, we shall introduce
the average energy on a given frequency band E i ( fi 1, fi 2)


Ei ( fi 1, fi 2) = 1


t


∫ t


0


∫ 1/2π fi 1


1/2π fi 2


1


s2
| f̃ (s, t)|2dsdt. (7)


The energy is averaged over time. In human blood-flow signals, five characteristic
peaks were typically found (see Fig. 4). Their position differs from one subject
to another, but for every peak a frequency band can be defined, within which it is
found in all subjects. Every band is named according to the supposed origin of the
corresponding rhythmic activity. Based on local minima of average scolograms
and physiological knowledge, the bands were chosen as:
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• f11 = 0.6 Hz, f12 = 1.6 Hz for heart activity,
• f21 = 0.16 Hz, f22 = 0.4 Hz for respiratory activity,
• f31 = 0.06 Hz, f32 = 0.16 Hz for myogenic activity,
• f41 = 0.02 Hz, f42 = 0.06 Hz for neurogenic activity, and
• f51 = 0.0095 Hz, f52 = 0.02 Hz for metabolic activity.


However, the absolute value of the energy defined by equation (7) may some-
times be misleading. If the total energy of the signal increases, it is very probable
that the energy in each band will increase. In such cases, it is in our interest
to find out if and how the distribution of the energy among the subsystems has
changed. Therefore, we shall introduce the relative energy contribution of a given
frequency band ei ( fi 1, fi 2)


ei ( fi 1, fi 2) = Ei ( fi 1, fi 2)


Etotal
, (8)


where Etotal is the energy of the signal contained in the frequency band of our
interest, i.e., between 0.0095 and 1.6 Hz.


3.2.2. Average amplitude. The amplitude of a characteristic peak can also be
used to characterize the dynamics. But the amplitude in the average scalogram
depends on the variability of the frequency in question. The more constant the
frequency, the higher the peak. The average value of the amplitude in the given
frequency band is thus a better choice. We shall introduce it as


Ai ( fi 1, fi 2) = 1


t


∫ t


0


1


fi 2 − fi 1


∫ 1/2π fi 1


1/2π fi 2


1


s2
f̃ (s, t)dsdt. (9)


Analogous to equation (8), the relative amplitude is


ai ( fi 1, fi 2) = Ai ( fi 1, fi 2)


Atotal
, (10)


where Atotal is the amplitude, averaged over the frequencies between 0.0095 and
1.6 Hz.


By defining the characteristic measures from the time-averaged scalogram we
have lost an important advantage of the wavelet transform—the information about
time. However, we have retained the other, also important in our case—the
logarithmic frequency resolution.


3.3. Time and spatial variations.All of the above defined characteristic mea-
sures of the dynamics were tested for time and spatial dependence.


Therefore, two sets of measurements were performed. In the first case, the
flow was measured twice at the same site. This set was used to test whether







928 M. Bračič and A. Stefanovska


0


5


10


15


20


A
bs


ol
ut


e 
en


er
gy


 (
au


)


E5 E4 E3 E2 E1


(a)


0


0.2


0.4


0.6


0.8


R
el


at
iv


e 
en


er
gy


e5 e4 e3 e2 e1


(b)


0


5


10


15


20


A
bs


ol
ut


e 
am


pl
itu


de
 (


au
)


A5 A4 A3 A2 A1


(c)


0


2


4


6


8


R
el


at
iv


e 
am


pl
itu


de
 


a5 a4 a3 a2 a1


(d)


Figure 5. Absolute and relative energy (a and b) and amplitude (c and d) in each
frequency band for two subsequently measured flows (control group).


the dynamic properties of the flow change with time. The Wilcoxon signed
rank test does not reveal any significant difference between the subsequently
measured flows in terms of energy and average amplitude. Figure 5 illustrates
the distribution of data as box plots. Box plots with five horizontal lines, which
show the 10th, 25th, 50th, 75th and 90th percentiles, are used in all statistical
plots in the paper. The values above or below the 90th and 10th percentile are
represented as data points.


Within the second set of measurements, the flow was observed simultaneously
at two sites. Sites where the density of vessel’s network is approximately the
same were selected. No significant difference in the energy content and the
amplitude (Fig. 6) was found between the measurements.


Thus, we may conclude that the above defined measures are both time and
spatial independent.


4. ATHLETES VERSUS CONTROLS


The wavelet transform using the Morlet wavelet was applied to blood-flow
signals measured on two groups—a control group and the group of athletes—
and the defined measures for energy and amplitude were used to find differences
between the groups.


The signals were measured in relation to the hypothesis that physical condi-
tioning induces adaptations in the human microvascular endothelium vasodilating
properties which better enable athletes to perform at maximum capacity (Kvernmo
et al., 1998). In the study, which was approved by the ethics committee, nine
healthy young subjects who performed some physical activity (controls) and nine
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Figure 6. Absolute and relative energy (a and b) and amplitude (c and d) in each
frequency band for simultaneously measured flows at two sites (control group).


long-distance runners (athletes) competing at national level for more than 5 years
participated. Each gave informed consent prior to the measurements. None of
the subjects had taken medications nor had they smoked for at least 1 week
prior to the study. The measurements were made between 11.00 a.m. and 8.00
p.m., the subjects were in a supine position in a room whose air temperature was
maintained at a constant 22 ± 1 ◦C. The signal of one subject from each group
is presented in Fig. 7.


4.1. Average values.Comparing both signals in Fig. 7, a difference in the
average values of peripheral blood flow can be observed. This difference is
statistically significant. Namely, the control group had a median blood-flow
value of 3.16 (2.8–3.7), whilst the group of athletes had the median of 4.9 (4.8–
5.6). The Mann–Whitney test reveals a significant difference between the two
groups (p = 0.004, see Table 1).


Table 1. The average values, total energy content and average spectral amplitudes of the
blood flow signals. The median value, 25% and 75% of the range are given.


Controls Athlethes Significance
Average value 3.16 4.9 Yes


(2.8–3.7) (4.8–5.6) p = 0.004
Total energy 10.8 34.5 Yes


(5.8–14.0) (18.7–119.4) p = 0.003
Average amplitude 1.96 3.49 Yes


(1.44–2.91) (2.8–5.9) p = 0.008


However, this is not the only difference between the groups. One can assume
from the plots in the time domain in Fig. 7 that the dynamics of the two signals
also differ. To analyze these differences, the wavelet transform was applied to all
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Figure 7. The signal of peripheral blood flow, measured from a control subject and an
athlete.


measured signals. Figure 8 presents the average scalograms of a control and an
athlete. In the following, the differences that can be found in average scalograms
will be discussed.


4.2. Position of the peaks.It is well known that athletes have a slower heart
beat at rest; our analysis supports this fact. The peak of the heart activity is
detected at 0.97 Hz (0.95–1 Hz) for the controls and at 0.86 Hz (0.79–0.94
Hz) for the athletes. The difference in the medians between the two groups is
statistically significant (p = 0.041). The other four peaks also appear at lower
frequencies in the group of athletes, but the differences are not significant.


4.3. Average energy content.The total energy of the signal was significantly
greater for the athletes compared with the controls (p = 0.003, see Table 1).
Futhermore, the energy is larger within each of the five observed frequency bands
[see Fig. 9(a)]. However, only in the region of heart-beat frequency (0.6–1.6 Hz)
and in the lowest frequency band (0.0095–0.02 Hz), was there a difference greater
than would be expected by chance (p = 0.001 and p = 0.022, respectively).


4.4. Relative energy contribution.The comparisons of the relative energy con-
tributions of each subsystem are summarized in Fig. 9(b). We can see that the
increase of energy is mainly due to increased heart activity. Namely, the relative







Wavelet-based Analysis of Human Blood-flow Dynamics 931


0


5


10


15


20


00.511.52
Log scale = log 1/f


A
ve


ra
ge


 s
ca


lo
gr


am
 (


au
)


0.97 Hz
0.26 Hz


0.11 Hz
0.03 Hz


0.014 Hz
Control


0


10


20


30


40


00.511.52
Log scale = log 1/f


A
ve


ra
ge


 s
ca


lo
gr


am
 (


au
)


0.81 Hz
0.2 Hz


0.083 Hz


0.045 Hz


0.014 Hz
Athlete


Figure 8. The time-averaged scalogram of a control subject and an athlete.


contribution of the heart is larger in the athletes than in the controls (p = 0.017).
All other subsystems contribute relatively less energy in athletes compared with
controls. The difference is significant for the myogenic (p = 0.047) and neuro-
genic systems (p = 0.013).


4.5. Average amplitude. The amplitude averaged over the whole frequency
band of our interest is significantly higher for athletes than for controls (p =
0.008, see Table 1). As with energy, the amplitude is also higher in each fre-
quency band and again the difference is significant only for the heart-beat fre-
quency (p = 0.001) and the lowest frequency band (p = 0.017), see Fig. 10(a).


4.6. Relative amplitude. A comparison of the relative amplitudes in Fig. 10(b)
again reveals that stronger heart activity is the main source of the higher flows
in athletes. Relative amplitudes in all other frequency bands are smaller in ath-
letes than in controls, the difference is significant for respiratory (p = 0.034),
myogenic (p = 0.013) and neurogenic (p = 0.027) activities.


The results obtained using energy and amplitude as the characterizing quantity
are consistent. Only the relative contribution of respiration is significantly smaller
in athletes if amplitudes are considered, whilst, in terms of energy, the difference
is not significant.
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energy contributions (b) for the control group (white) and the group of athletes (gray).
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5. DISCUSSION


The cardiovascular system is a dynamic system, the quantities related to it
change continually in a deterministic manner (Bračič and Stefanovska, 1998a).
The system that regulates blood circulation is complex and nonlinear. However,
several subsystems contribute almost periodically to the maintenance of blood
flow through the cardiovascular system. Therefore, in addition to methods of
nonlinear dynamics, methods of spectral analysis should be used to reveal the
nature of the system.


It has been shown that characteristic frequency peaks exist in signals of cardio-
vascular origin (Bračič and Stefanovska, 1998a). However, due to mutual cou-
plings between the subsystems, the peaks vary in time (Stefanovska et al., 1998).
The time-varying nature of characteristic frequencies in the cardiovascular sig-
nals demands an analysis in the time-frequency domain. The short-time Fourier
spectral estimation does not perform well if the peaks are distributed over a broad
frequency band. Therefore, a wavelet analysis which offers adjustable window
lengths was used to reveal characteristic peaks ranging from 0.01 to 1 Hz. Re-
cently, a modification of the Fourier approach with adjustable window length was
proposed (Keselbrener and Akselrod, 1996).


In this paper, we have applied the wavelet transform to the signals measured
from human blood flow. The approximation of a continuous wavelet transform
was calculated to obtain the energy density in the time-scale plane. The Morlet
wavelet, which gives optimal time-frequency localization, was used. To compare
the scalograms of all subjects, four qualitative measures were introduced: the
energy within a given frequency band; the average value of amplitude in this
band, the relative contribution of the band to the total energy; the relative value
of the average amplitude. All measures were shown to be time and spatial
independent.


A difference between the control group and the group of athletes can be de-
tected by statistical analysis over average values of the observed blood flow.
Namely, the median value of the flow is significantly higher in athletes than in
controls. However, it is the analysis of the dynamics that reveals the origin of
this difference.


Although the absolute value of energy and average amplitude is larger in athletes
in all frequency bands, the difference is significant only in the band belonging to
the heart-rate frequency (0.6–1.6 Hz) and the lowest frequency band (0.0095–0.02
Hz). Moreover, in comparing the relative energy and amplitude contributions,
we found that only the heart contributes relatively more energy to the flow,
whilst all other subsystems give less in athletes compared with controls. In two
bands, one between 0.06 and 0.15 Hz, resulting from the spontaneous rhythmic
activity of the vessels, and the other between 0.02 and 0.06 Hz, resulting from
the neurogenic regulation of blood flow, the contribution is significantly smaller
in athletes. Thus, we may conclude that it is the heart activity which carries
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most of the burden of the increased flow. The amount of blood expelled during
one heart-beat is higher in athletes than in controls. The results obtained in this
study also show that, in athletes, the blood passes through the peripheral vascular
bed in a significantly greater amount, due to the presumably lower resistance
of those vessels. The peripheral vessels in athletes must be dilated to a greater
extent than in control subjects, in order to allow passage of this higher flow,
synchronized to the heart rhythm. It is also known that the capillary network is
larger in athletes compared with controls. This indicates that long-term intensive
physical exercise results in decreased resistance of the peripheral vessels along
with the well-known increase of cardiac stroke volume.


6. CONCLUSIONS


The peripheral blood-flow signals, measured by the laser Doppler flow meter,
were analyzed using the wavelet transform with the Morlet wavelet. This trans-
form maps the signal from the time domain to the time-frequency domain. Its
major advantage compared with the Fourier-based methods lies in the logarithmic
time and frequency resolution. Thus, we were able to follow the time variations
of frequency peaks in the range from 0.01 to 1 Hz. In this band, five character-
istic peaks were found. The oscillations were characterized by time and spatial
invariant measures.


This dynamic approach can be used to reveal the physiological and patho-
physiological properties of the mechanisms of cardiovascular control from the
noninvasively measured signals. An illustration was given by comparing the
blood flows, measured on two groups: a control group and a group of athletes.
Several differences in the dynamics of the blood flow were found between these
two groups, in addition to the difference in the median values of the flow. Us-
ing the dynamic approach, namely the wavelet transform, we were able to show
that the increased blood flow in the trained subjects results from both the greater
stroke volume and increased compliance of the peripheral vessels.
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——Kastrup, J., J. Bühlow and N. A. Lassen (1989). Vasomotion in human skin before and


after local heating recorded with laser Doppler flowmetry. A method for induction of
vasomotion. Int. J. Microcirc.: Clin. Exp. 8, 205–215.


——Keselbrener, L. and S. Akselrod (1996). Selective discrete Fourier transform algorithm
for time-frequency analysis: methods and application on simulated cardiovascular
signals. IEEE Trans. Biom. Eng. BME-43, 789–802.


——Kitney, R. I., T. Fulton, A. H. McDonald and D. A. Linkens (1985). Transient interactions
between blood pressure, respiration and heart rate in man. J. Biomed. Eng. 7, 217–
224.


——Kvernmo, H. D., A. Stefanovska, K. A. Kirkebøen, B. Østerud and K. Kvernebo (1998).
Microvascular reactivity and tissue plasmiogen activator reveal endothelial adaptation
induced by physical conditioning. Eur. J. Appl. Physiol., submitted.


——Morlet, J. (1983). Sampling theory and wave propagation, in Issues in Acoustic Sig-
nal/Image Processing and Recognition, NATO ASI Series, Vol. I, CH. Chen (Ed.),
Berlin: Springer-Verlag.


——Stefanovska, A. (1992). Self-organisation of biological systems influenced by electric
currents, Dissertation, University of Ljubljana, Ljubljana.
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Nonlinear Dynamics of the Blood Flow Studied by
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In order to gain an insight into the dynamics of the cardiovascular system through-
out which the blood circulates, the signals measured from peripheral blood flow
in humans were analyzed by calculating the Lyapunov exponents. Over a wide
range of algorithm parameters, paired values of both the global and the local Lya-
punov exponents were obtained, and at least one exponent equaled zero within
the calculation error. This may be an indication of the deterministic nature and
finite number of degrees of freedom of the cardiovascular system governing the
blood-flow dynamics on a time scale of minutes. A difference was observed in
the Lyapunov dimension of controls and athletes.


c© 1998 Society for Mathematical Biology


1. INTRODUCTION


The cardiovascular system is a complex physical system that transports the
blood to and from each cell of the body, thus enabling living organisms to
exchange energy and matter with their environment, and hence to act as open
systems. The blood flows from the high-pressure arterial to the low-pressure
venous system and returns about once every minute to the heart. The dynamics
of blood circulation and the mechanisms that regulate the blood flow are still
only partially understood.


It is known that cardiovascular control mechanisms manifest themselves through
rhythmic activities in the related signals (Hyndman et al., 1971, Akselrod et al.,
1981). The analysis of these rhythms plays an essential role in better compre-
hension of the physiological properties of the control mechanisms. The spectral
analysis was widely applied to cardiovascular functions, especially the blood
pressure and heart rate variability (HRV) signals (see Di Renzo et al., 1995, and
references therein). In addition to the fluctuation in heart rate associated with
the respiratory cycle, there are also periodic fluctuations at lower frequencies.
Three peaks were found in the power spectrum of the HRV, one centered at the
respiratory frequency, the other two typically around 0.1 and 0.05 Hz. The same
peaks were found in the spectrum of the blood-pressure signal.


∗Author to whom correspondence should be addressed.
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The frequency analysis of peripheral blood flow, on a time scale of minutes, re-
vealed five characteristic frequencies (Stefanovska, 1992). Apart from the cardiac
and respiratory rhythms at 1 and 0.3 Hz, respectively, three frequency peaks were
detected in regions around 0.1, 0.05 and 0.01 Hz. Although two of them were
reported in blood-pressure and HRV signals by several authors, their physiologi-
cal origin is not reliably known. They most probably result from the systems that
control the resistance of the vessels through their diameter (Stefanovska, 1992).


Peripheral blood flow reflects the influence of both the central and local mech-
anisms that regulate blood flow. The characteristic frequencies found either in
the signals of an electrocardiogram (ECG), HRV, blood pressure or respiration
also appear in the spectrum of the peripheral blood flow. Therefore, we have fo-
cused on the analysis of the blood-flow signals. However, like any physiological
system, the system that regulates the flow of blood is a nonlinear one. To reveal
the nature of the system further, the robust linear analysis in the frequency do-
main was supplemented by the methods of nonlinear system theory (Stefanovska
et al., 1997). These methods classify the system using dynamical invariants such
as various dimensions and Lyapunov exponents in the phase space.


In this paper, we present calculations of all Lyapunov exponents from the sig-
nals measured from peripheral blood flow. Numerous methods for calculating
Lyapunov exponents have been developed during the past decade (see Abarbanel
et al., 1993, and references therein), all of them having free parameters which


affect the results in various ways. After giving a brief background of the mea-
surements in Section 2, in Section 3 we present the essentials of the algorithm
and introduce the role of each parameter. In Section 4 we analyze the effect of
each parameter on the exponents of the blood flow measured on a healthy male
subject. In Section 5 we compare the exponents of athletes and control subjects.
The results are discussed in Section 6.


2. BACKGROUND OF THE MEASUREMENTS


The signals were measured in relation to the hypothesis that physical con-
ditioning induces adaptations in human microvascular endothelium vasodilating
properties which better enable athletes to perform at maximal capacity (Kverno
and Østerud, 1997). In the study, which was approved by the ethics committee,
nine healthy control subjects and 10 athletes competing at national level partici-
pated. They all gave their informed consent prior to the measurements. None of
the subjects had taken medications or had smoked for at least a week prior to the
study. The measurements were made between 11:00 and 20:00 h, the subjects
were in a supine position in a room with a constant air temperature at 22± 1 ◦C.


The technique of measurement of blood flow based on laser light and the
Doppler principle is a non-invasive method and allows for continuous recordings
(Stern, 1975; Nilsson et al., 1980). A laser Doppler flow meter MBF 3D (MOOR
Instruments, Millway, U.K.) was used. It has a near-infrared laser diode with a
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Figure 1. The blood-flow signal of a healthy control subject in: (a) time domain; (b) phase
space; (c) frequency domain. The phase space was reconstructed in d = 2 dimensions
using embedding time τ = 0.1 s. The frequency spectra were estimated by the Burg
autoregressive method.


power of 1.0 mW which emits light at a wavelength of 780 nm. An optical-fiber
probe was used to direct the laser light to the study area. The fiber probe consists
of two optical fibers; one is used to deliver light to the site under observation, and
the other is used for collecting weak backscattered light containing the Doppler-
shifted information. The signal is then filtered by means of a high-pass filter with
a cut-off frequency of 18 Hz and a low-pass filter at 22.5 kHz. A time constant
of 0.1 s was selected. One channel was recorded and, via RS 232 serial link, the
signals were stored in a personal computer.


The Lyapunov exponents were calculated from signals recorded for 20 min,
sampled by 40 Hz. One of the signals is presented in the time domain in Fig. 1(a),
and in the phase space in Fig. 1(b). The frequency spectra of blood-flow signals
collected in all 19 subjects contained five characteristic frequencies. Further
details on the frequency analysis of blood flow signals can be found in Bračič
and Stefanovska (in press). One of the frequency spectra is presented in Fig. 1(c).


3. THE LYAPUNOV EXPONENTS


The Lyapunov or characteristic exponents measure the rate of convergence or
divergence of the trajectories of a dynamical system in the phase space. At the
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end of the last century, Lyapunov (1892) introduced them as


λ(δy0) = lim
t→∞


1


t
log


(‖δy(t)|δy0‖
‖δy0‖


)
, (1)


where δy is a small perturbation to the orbit of a dynamical system


ẏ(t) = f (y(t)), y(0) = y0 y ∈ <d. (2)


The time evolution of these small perturbations is governed by the linearized
equation


δẏ(t) = Df (y(t))δy(t) δy(0) = δy0, (3)


where Df is the Jacobi matrix of the flow defined by equation (2). Lyapunov
proved that the quantity defined by equation (1) is finite for every non-zero
solution. Moreover, the set of all possible exponents is finite with cardinality
1 ≤ p ≤ d. Using different linearly independent initial conditions δy01 . . . δy0d,
one obtains the fundamental system of solutions λ1 ≥ λ2 ≥ . . . ≥ λd.


The spectrum of Lyapunov exponents is an invariant of a dynamical system and
may therefore be used to characterize the dynamic under study. If the underlying
dynamics are governed by a differential equation, one of the Lyapunov exponents
will be zero. Indeed, one can tell if the system dynamics are governed by
differential equations by the presence or absence of a zero Lyapunov exponent.
The stable periodic state has one characteristic exponent equal to zero, while
the others are negative. A quasiperiodic system with k rationally independent
frequencies has k zero exponents. A Hamiltonian (conservative) system with m
degrees of freedom is a dynamical system in d = 2m dimensions. Due to the
infinitesimal symplectic symmetry of the Jacobi matrices, the exponents of such a
system are obtained in pairs which are equal and opposite, and two of them vanish.
The sum of all exponents of a dissipative system is negative, and it governs the
rate at which volumes in phase space shrink to zero. The characteristic exponents
of the time-reversed system are those of the original system, but with an opposite
sign [for review see Eckmann and Ruelle (1985) and references therein].


From the Lyapunov exponents, one may estimate the Lyapunov dimension


dim3 = k+
∑k


i=1 λi


|λk+1| , (4)


where
∑k


i=1 λi ≥ 0 and
∑k+1


i=1 λi < 0. According to the Kaplan–Yorke conjecture,
this is a lower bound on the fractal dimension of the attractor (Kaplan and Yorke,
1978).


The Lyapunov exponents can be extracted from measured signals in two dif-
ferent ways: either by following the time evolution of nearby points in the phase
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space or by estimating the local Jacobi matrices of the flow in subsequent orbit
points. The algorithms belonging to the first group, introduced by Wolf et al.
(1985), Sato et al. (1987) and Rosenstein et al. (1993) use the definition of the
exponents by equation (1) directly, and offer estimates only for the largest one.
On the other hand, Jacobi-based algorithms, introduced by Eckmann and Ruelle
(1985) as well as by Sano and Sawada (1985), estimate all Lyapunov exponents.


The calculations of Lyapunov exponents lean on the assumption that there
exists an attractor in the phase space. When dealing with scalar signals sampled
at equidistant points, nts, ts is the sampling time, the attractor can be reconstructed
by the method of delay coordinates (Packard et al., 1980). Using d scalar values
of the signal, d-dimensional vectors


y(n) = [s(n), s(n+ T), . . . , s(n+ (d − 1)T)], (5)


are constructed, where d is the dimension of the embedding space and the time
lag T is some integer. If d is chosen large enough, the invariants of the attractor
reconstructed by equation (5) and those of the original attractor will be the same
(Mane, 1981; Takens, 1981).


The Jacobi-based methods determine the Lyapunov exponents by following the
evolution of small perturbations to a chosen orbit (fiducial orbit). After S steps
of zts, the initial perturbation will grow or shrink to


δy(n+ Sz)= Df (y(n+ (S− 1)z)) . . . Df (y(n+ z)) · Df (y(n)) · δy(n) =
= Y(y(n), S)δy(n) . (6)


Oseledec (1968) proved that the matrix


3 = lim
S→∞


[
Y(y(n), S) · Y(y(n), S)T


] 1
2S (7)


exists and has eigenvalues eλ1 , eλ2 . . .eλd for a d-dimensional system that are
independent of y(n). The λi are the global Lyapunov exponents. Numerically,
the computation of Y(y(n), S) fails for large S because the column vectors in
Y(y(n), S) converge extremely rapidly to that subspace of the tangent space which
has the fastest expansion rate. However, using recursive decomposition on an
orthogonal (Q) and upper triangular (R) matrix (QR decomposition) as proposed
by Eckmann and Ruelle (1985), the eigenvalues of matrix (7) may be calculated.


In practice, the limit case S→ ∞ can not be reached. Therefore, Abarbanel
et al. (1991) introduced local Lyapunov exponents as the logarithms of the


eigenvalues of the matrix


3(y, S) = [Y(y(n), S) · Y(y(n), S)T ]
1


2S, (8)


where S is a finite number. They are no longer independent of the starting
point y(n) and may vary significantly on the attractor. Nonetheless, the mean
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values of exponents calculated from different starting points converge towards
the global Lyapunov exponents. Again, QR decomposition is used to calculate
the eigenvalues of matrix (8) (Abarbanel et al., 1993).


Global Lyapunov exponents represent an average over the attractor and there-
fore bear no information about the local behavior on the attractor. The capacity to
reveal the local properties of the attractor is the main advantage of local exponents
over global ones. In addition, when dealing with measured data, the impact of
signal non-stationarity is less pronounced on local exponents; furthermore, long
signals are needed to ensure the convergence of global exponents. Finally, in the
case of global exponents, there remains the possibility of accidentally selecting
an atypical fiducial orbit, and thus obtaining results that do not actually reflect
the properties of the attractor. If such an orbit is selected when computing local
exponents, the value of the local Lyapunov exponent associated with this orbit
differs substantially from the average value.


When dealing with measured signals, one has no knowledge of the equations of
the motion and the Jacobi matrix; therefore, the dynamic has to be approximated.
The components fl of the function f around a point y(n) in the phase space can
be chosen as


fl (y(n)) =
N0∑


k=1


cklχk(y(n)), (9)


where χk(y(n)) is a set of basis functions (Abarbanel et al., 1991). Use was
made of linear (Eckmann and Ruelle, 1985; Sano and Sawada, 1985), quadratic
(Brown et al., 1991), or higher polynomials of the difference vectors δy(n) and
radial (Holzfuss and Parlitz, 1990) basis functions χk =


√
r 2 + ‖δyk(n)‖2.


The coefficients clk are determined by a least-squares fit, thus minimizing the
residuals for taking a set of Nb neighbors of y(n) to a set of neighbors of y(n+z).
When computing the coefficients, it is necessary to distinguish between interpo-
lation and approximation of local flow (Parlitz, 1992). At least N0 neighbors
are needed to determine clk uniquely, and thus interpolate the flow. If the least-
squares fit is computed with more data points than basis functions, then the flow
is approximated.


Let us briefly summarize the procedure for estimating Lyapunov exponents
from measured signals.


• The attractor is reconstructed from the scalar signal by the method of delay
coordinates [equation (5)].
• A set of basis functions is chosen and the flow f is approximated according


to equation (9).
• From the Jacobi matrices of the flow Df , matrix 7 is constructed, and its


eigenvalues are obtained by QR decomposition.


The calculation of Lyapunov exponents from signals depends on the choice of
the algorithm input parameters. Those parameters are:
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• the number of measured data points N,
• the embedding time τ = T ts and dimension d,
• the evolution time tevol = zts, i.e. the time between subsequent orbit points


at which the tangent map is analyzed,
• the number of steps along the fiducial orbit S or the observation time Stevol ,
• the choice of the neighborhood of the reference point, and
• the choice of basis functions to approximate the flow.


No analytical criteria for parameter settings are available. In practice, the effect
of each parameter should be studied. Thereupon, calculations with different
parameters were made for several numerically generated test signals, namely
the Henon map, Lorenz system and quasiperiodic signals. The Henon map and
Lorenz system are popularly used as test signals. The quasiperiodic signals
resemble the measured signal, but are still simple enough for their Lyapunov
spectrum to be determined analytically.


The results on test signals are presented elsewhere (Braˇ ciˇ c and Stefanovska,
1997), while our experiences regarding parameter settings on a blood-flow signal
measured on a healthy male person are given in Section 4.


4. PARAMETER SETTINGS FOR THE BLOOD-FLOW SIGNAL


The measured signal of blood flow is not noise free—it contains instrumental
noise and the noise resulting from movements of the subject during the recording.
Filtering the signal in the phase space [for a review of methods see Abarbanel
et al. (1993)] can affect the inherent dynamics when little is known about the


system. Therefore, no dynamic filtering was used. A low-pass moving average
filter was used in order only to remove the trend from the signal. Since we are
reconstructing the dynamics within a 1-min cycle, a window length of 80 s was
chosen. After low-pass filtering, N = 23 000 points of the signal were available
for attractor reconstruction. The parameter settings were based on information
obtained by the power density spectrum, as well as on the knowledge of the
parameter dependence achieved by the test signals.


4.1. Convergence rates.Calculations, by Goldhirsch et al. (1987) of the expo-
nents from the equations of motion have shown that, except for a short transient
time, all exponents have the form


λi (t) = λi + bi + ζi (t)


t
, (10)


where bi is a constant and ζi (t) is an oscillating function of zero average and
small amplitude. Basically, the convergence of the estimation of exponents from
signals should be the same as long as the flow is adequately approximated. How-
ever, noise may slow down the convergence owing to an additional error in the
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Figure 2. Convergence of the fifth exponent of the blood flow signal. N = 23 000,
ts = 0.025 s, d = 14, τ = 0.075 s, tevol = 0.25 s, S= 2000, Nb/N0 = 2, radial basis
functions were used, N0 = 100.


approximation of the flow. If the signal-to-noise ratio is too low, the exponents
of a flow on a two-torus no longer decrease towards zero as 1/t , but have a finite
negative or positive value.


A typical convergence of one of the Lyapunov exponents of the blood-flow
signal, namely the fifth, is plotted in Fig. 2(a). The dotted line represents the
estimated value of λ5. The absolute value of the difference between λ5(t) and its
final estimation plotted in Fig. 2(b) decreases more slowly than 1/t . Considering
the noise in the signal, this is to be expected.


Various dynamics in the range from 0.01 to 1 Hz contained in the signal influ-
ence the convergence of the exponents. Hence, the observation time Stevol should
be at least a few periods of the slowest oscillations in the signal. From Fig. 2 we
see that an observation time around 300 s is long enough to ensure convergence.
Moreover, for numerical reasons the convergence is not achieved unless a certain
number of steps, S, are taken along the fiducial orbit. In our experience S> 100
will suffice.
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Figure 3. Exponents of the blood-flow signal of a healthy person for embedding dimen-
sions: (a) from 6 to 12; (b) from 11 to 20, in (b) the exponents appear in pairs. Paired
exponents have markers of the same shape, the positive exponent has a filled marker
and the negative one has an empty marker. N = 23 000, ts = 0.025 s, τ = 0.075 s,
tevol = 0.25 s, S= 2000, Nb/N0 = 2, radial basis functions were used, N0 = 100.


4.2. Embedding parameters.There is no reliable method for determining em-
bedding dimension d and embedding time τ . For the first approximation, the em-
bedding time was estimated using the average displacement method (Rosenstein
et al., 1994). In this way, τ ≈ 0.1 s was determined for d ≥ 8. In addition,


calculations were made for the range of τ from 0.025 s to 0.2 s. The spectra
at τ = 0.075 s and τ = 0.1 s are qualitatively alike, and the embedding time
τ = 0.075 s was used for further calculations.


For the embedding dimension, using the false nearest-neighbors method (Abarbanel
et al., 1993), we obtained the criterion that d ≥ 5. Again, a range of values


was tested. Figure 3(a) and (b) presents exponents in embedding spaces of dif-
ferent dimensions. In low dimensions, the spectra vary significantly from one
dimension to the other [Fig. 3(a)]. As the dimension reaches 10, two patterns
can be observed in the Lyapunov spectra: either four paired and one zero (for
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d ≤ 10 ≤ 12) or five paired (for d > 12) exponents are calculated. In the latter
case, one pair equals zero within the calculation error. In Fig. 3, paired exponents
have markers of the same shape.


The number of calculated exponents is equal to the dimension of the phase
space d. If the reconstructed attractor is contained in a submanifold of dimension
m< d, d−m spurious exponents that are unrelated to the dynamics of the system
are obtained. To identify these, the exponents of the reversed time series are also
calculated. Under time reversal, true exponents change sign, while the spurious
ones do not (Parlitz, 1992).


Among the exponents of reversed signals, four or five pairs are observed again;
all the other exponents are negative. Only the latter can be identified as spurious.
Note that in Fig. 3(a) and (b) only those spurious exponents are plotted that fall
within the range of the y-axis.


4.3. Approximation parameters.Based on the experience gained on quasiperi-
odic test signals, one may choose either radial, quadratic or higher-order poly-
nomial functions as the basis functions to approximate the flow by equation (9).
However, the number of polynomial basis functions No grows rapidly with the
increasing order of the polynom. Since the low signal-to-noise ratio dictates
large Nb/No, the size of the neighborhood, εmax, can become large in compar-
ison with the attractor size r A. This may make the approximation of the flow
inadequate, and consequently it is possible that the convergence of the exponents
may be spoiled. Hence, only quadratic and radial basis functions were used on
the blood-flow signal. At chosen d, approximately similar results were obtained
when the same number of radial functions as the number of quadratic functions
were used. However, if radial basis functions are used, even smaller No and Nb


may be taken into account. In addition, radial basis functions are less sensitive
to noise. For the blood-flow signal, stable Lyapunov spectra were calculated for
Nb/No from 1 up to 3 if radial basis functions were used. For larger ratios, the
size of the neighborhood becomes too large (εmax/r A > 0.2) and the radial basis
functions are no longer available to approximate the flow adequately. Therefore,
some dynamics may be left out and the number of exponents is reduced (Fig. 4).
On the other hand, Nb/No > 2 is needed to obtain the same result with quadratic
basis functions. Since No grows with embedding dimension squared, there are
not sufficient data points available to use this ratio and keep εmax/r A small if the
dimension of the phase space exceeds 10. Therefore, radial basis functions were
used, and for embedding dimensions up to 20 No = 100 proved most appropriate.
To reduce the effect of noise and avoid approximation errors Nb/No = 2.


The impact of noise can further be reduced if only those neighbors of the
reference point that are at least εmin distant from the fiducial orbit are used to
approximate the flow. In this case the neighborhood has the shape of an annulus.
For the blood-flow signal εmin/r A = 0.01 was taken.


There was little a priori knowledge about the evolution time. Fell and Beckmann
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Figure 4. The Lyapunov spectrum for different Nb/N0. N = 23 000, ts = 0.025 s,
d = 14, τ = 0.075 s, tevol = 0.25 s, S = 2000, radial basis functions were used,
N0 = 100.


(1994) recommended tevol < τ or tevol > (d − 1)τ . Neither of their suggestions
can be used for our signal. If tevol < 0.75 s, the reference points on the fiducial
orbit are very close in phase space and their neighborhoods may overlap. On
the other hand, the signal is not long enough to ensure enough steps along the
fiducial orbit if tevol > (d − 1) 0.75 s in high dimensions. Therefore, only the
case tevol = kτ , where resonance-like phenomena were observed, was avoided.
The calculations with different evolution times revealed that after tevol exceeds a
few sampling times, typically 3 to 10, all exponents monotonically decrease but
none of them changes sign.


5. CONTROL SUBJECTS AND ATHLETES


The calculations presented above were made using blood-flow signals of control
persons. For exponent estimation from signals of the blood flow of athletes, the
algorithm parameters were set according to the experiences described in Section 4.


The exponents in different embedding dimensions are plotted in Fig. 5(a) and
(b). For 10 ≤ d ≤ 13 four paired and one zero exponent were found. In this
interval of embedding dimension the spectra are similar to those of the control
subjects (see Fig. 3), only the absolute values of all exponents are smaller. But
as d > 13, the zero exponent is no longer detected and only four pairs remain.
Similarly, the spectra of control subjects also change at d = 13. However, in this
case a new pair that equals zero within the calculation error is detected instead
of the zero exponent. We are not yet able to explain these phenomena, but
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Figure 5. Exponents of the blood-flow signal of an athlete for embedding dimensions:
(a) from 6 to 12; (b) from 11 to 20, in (b) the exponents appear in pairs. Paired
exponents have markers of the same shape, the positive exponent has a filled marker
and the negative one has an empty marker. N = 23 000, ts = 0.025 s, τ = 0.075 s,
tevol = 0.25 s, S= 1000, Nb/N0 = 2, radial basis functions were used, N0 = 100.


it is quite possible that they result from the numerical procedure: namely, the
available number of points is not large enough to satisfy the Eckmann–Ruelle
criterion (Eckmann and Ruelle, 1992) in high embedding dimensions. The fact
that the spectrum of local exponents does not change qualitatively—four pairs
and one zero exponent are calculated for all d ≤ 16—supports this assumption.
The distribution of local exponents in d = 12 is presented in Fig. 6(b).


The local exponents were calculated with the same parameters as the global
ones, except for the number of steps S. In this case a small number of steps is
allowed owing to a different calculation procedure; up to 300 steps were used.
When local exponents were calculated, paired values were again obtained. Figure
6(a) presents the distribution of values of the first nine exponents for a control
subject, and Fig. 6(b) the first nine exponents for an athlete, calculated in 12-
dimensional embedding space. This embedding dimension was chosen based on
the values of global exponents which are relatively stable for 10 ≤ d ≤ 13.







Nonlinear Dynamics of the Blood Flow Studied by Lyapunov Exponents 429


40


0


40


20


20R
es


ul
ts


 (
%


)
R


es
ul


ts
 (


%
)


0
–2 –1.5 –1 –0.5 0


Exponent value (s–1)


0.5 1 1.5 2


–2 –1.5 –1 –0.5 0


Exponent value (s–1)


0.5 1 1.5 2


λ9 = –1.35 s–1


λ9 = –1.55 s–1


λ8 = –1.1 s–1
λ7 = –0.68 s–1


λ6 = –0.33 s–1
λ5 = 0.02 s–1


λ4 = 0.31 s–1


λ3 = 0.7 s–1
λ2 = 1.1 s–1


λ1 = 1.6 s–1


λ8 = –0.9 s–1


λ7 =– 0.6 s–1


λ6 = –0.25 s–1


λ5 = –0.02 s–1


λ4 = –0.03 s–1


λ3 = –0.06 s–1


λ2 = –1.0 s–1


λ1 = –1.4 s–1


(b)


(a)


Figure 6. The distribution of local exponents of the blood-flow signal of: (a) a healthy
control subject; (b) an athlete, calculated from 50 different starting points. N = 23 000,
ts = 0.025 s, d = 12, τ = 0.075 s, tevol = 0.25 s, S= 300, Nb/N0 = 3, quadratic basis
functions were used.


Comparing the values of both global (Figs 3 and 5) and local [Fig. 6(a) and
(b)] exponents of control subjects and athletes, we observe that the exponents of
athletes have smaller values.


The numerical procedure for calculating the exponents does not provide any
error estimation. However, some information about the error limits may be
obtained from the distribution of the exponents calculated from different fiducial
orbits. Thus, based on these distributions, the absolute error of each exponent is
approximately 0.1 s−1 for both controls and athletes.


Taking this error into account, the Lyapunov dimension was estimated. The
estimations in different embedding dimensions are plotted in Fig. 7. For d > 14,
saturation is reached with both controls and athletes. However, this saturation
may be a consequence of the finite number of points in the signal. Therefore, the
Lyapunov dimension was estimated using d < 13. Thus we may conclude that
the Lyapunov dimension of the system lies between 9 and 11 for control subjects
and between 7.5 and 9.5 for athletes.
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Figure 7. The Lyapunov dimension calculated from the Lyapunov exponents for: (a)
a control subject; (b) an athlete. The parameters are the same as in Figs 3 and 5,
respectively.


6. DISCUSSION


Traditionally, the signals generated by the cardiovascular system are analyzed
by means of linear-system theory or even by static assumptions. However, the
cardiovascular system is a nonlinear dynamical system. Therefore, nonlinear
methods should be applied so that an understanding is achieved of the principles
governing the dynamics of the underlying system from the measured signals. In
this paper we present the results of the estimation of the Lyapunov exponents
from signals measured from peripheral blood flow, so that an insight may be
gained into the dynamics of the cardiovascular system.


So far, the peripheral blood flow has been analyzed only in the frequency
domain, [see, for example, Hoffmann et al. (1990) and references therein].
However, some reports can be found in the literature dealing with the estima-
tion of the largest Lyapunov exponent from other physiological signals, such as
blood pressure (Griffith, 1996), ECG (Glass and Kaplan, 1993) and electrocen-
cephalograms (Fell et al., 1993). In those papers, the authors were primarily
interested in the sensitive dependence on initial conditions which can be revealed
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by calculating the largest exponent. We would like to find out whether the sig-
nals are generated by a deterministic system, and at the same time to gain some
information about the nature of its dynamics. Therefore, we need to evaluate all
exponents.


The question of the deterministic or stochastic nature of the signal, and thus the
system which generates it, becomes vital whenever the modeling of the system is
approached. To choose an adequate modeling procedure the knowledge is needed
of whether a deterministic system with finite numbers of degrees of freedom is
being dealt with or whether is it a system with infinite degrees of freedom. Neither
time nor frequency-space analysis can clearly distinguish between colored noise
and the deterministic signal. However, not only can the Lyapunov exponents
answer the question of determinism in the signal, but the number of true exponents
is also an estimation for the number of degrees of freedom.


The cardiovascular system is a very complex physical system. By calculating
all Lyapunov exponents we wish to be able to tell whether the system can be
described by a set of differential equations, or whether its complexity lies beyond
the scope of deterministic modeling.


The estimation of all Lyapunov exponents from measured signals requires care-
ful setting of the algorithm free-parameter values. We paid particular attention
to this problem, and also did calculations for wide ranges of parameter values.


The appearance of an exponent that equals zero within the calculation error
shows that, from the peripheral point of view the blood-flow dynamics on the
time scale of minutes is governed by a deterministic system.


Over an interval of embedding dimension d the global and local exponents of
the blood-flow signals appear in pairs—we have either five pairs or four pairs and
the one zero exponent. It is known that the Lyapunov exponents of Hamiltonian
systems come in pairs which are equal and opposite (Eckmann and Ruelle, 1985).
However, even if a small noisy term is added to the infinitesimally symplectic
symmetric Jacobi matrix, the exponents would still be paired (Teichert, 1995).
We may assume that the Jacobi matrix of the blood-flow regulating system also
has such a form, and that the system is almost Hamiltonian. Since nine or ten true
exponents are found, this Hamiltonian system is a dynamical system in d = 10
dimensions. Thus, according to Eckmann and Ruelle (1985), we may conclude
it has m= 5 degrees of freedom.


A model of five coupled oscillatory subsystems involved in the regulation of
blood flow has been proposed (Stefanovska, 1992). Before examining the be-
havior of this complex model and its capacity to reproduce the dynamics of the
cardiovascular system, the basic assumptions of the model were checked. The
Lyapunov exponents, calculated from the blood-flow signal, support the hypoth-
esis of five oscillatory subsystems.


For all embedding dimensions, the exponents of control subjects have higher
absolute values than those of athletes. There is also a significant difference in the
estimated Lyapunov dimension, which is higher for control subjects as well. In
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athletes additional constraints are present, thus shrinking the attractor in the phase
space. These constraints may be due to stronger couplings among the subsystems
that regulate the flow of blood in the cardiovascular system. We hypothesize that
the strength of couplings plays an essential role in the overall performance of the
system. Better-trained subjects have stronger couplings, while weak couplings
lead to some pathological states; subjects in coma, for example, have almost no
couplings (Stefanovska et al., 1997).
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Abstract 

The effect of non-linear mapping from the time domain to the phase space may result in an overestimation of the 
correlation dimension. We analyse the origin of the overestimation and suggest a criterion for the number of points 
necessary to approach the true scaling region in the correlation integral. @ 1997 Elsevier Science B.V. 

PACS: 05.45.+b 

1. Introduction 

In this Letter we consider the practical application 
of the method of calculation of the correlation dimen- 

sion [ l-51. Analyses of a model of coupled oscil- 

lators, up to a 5-torus, are presented. Such a simple 
model was chosen for two reasons: (i) it resembles 
the frequency spectra of time series recorded from the 

cardiovascular system, whose complex dynamics we 
intend to ascertain [ 6-81, and (ii) the true value of its 

dimension is known. The reconstruction of the phase 
space using the method of delayed coordinates [9-l 1 ] 
is thus straightforward, since both crucial parameters 
- the embedding time and the embedding dimension 
- can be determined. Moreover, the effect of the num- 
ber of points used to reconstruct the attractor can be 
studied. The importance of the number of points has 
already been reported and several criteria have been 
proposed [ 12-151. We show that in the case of an 
insufficient number of points a false plateau may be 
found due to non-linear mapping from the time do- 
main to the phase space. As a result, an overestima- 

tion of the attractor dimension would be obtained. We 
approach this problem analytically and suggest a revi- 
sion of the criterion proposed by Eckmann and Ruelle 

[151. 

2. The algorithm and time series 

The reconstruction of a system dynamics usually 
begins with no knowledge of the number of state 
variables involved. There are therefore no time series 

available for each state variable. Indeed, quite often 
we start with one measured time series consisting of 
a finite number of points (n) sampled at equal time 
intervals, the sampling time ( tS) . The trajectories are 
then reconstructed using the method of delay coordi- 
nates 

x(t) = [X(t),X(t+7),...,X(t+(d-1)7)], (1) 

where t = tS, 2t,, . . .,nt,-(d-l)~anddisthedi- 
mension of the embedding space. The embedding time 
T = It, (I integer) is used for the reconstruction of 

03759601/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved. 
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the phase space. For a sufficiently large value of the 
embedding dimension d - and if some additional con- 
ditions are satisfied - the reconstructed trajectory has 
the same topological and geometrical properties as the 

system’s phase space trajectory [ 9- 111. The choice of 
both parameters - d and r - is crucial for the appro- 
priate reconstruction of an attractor. Different meth- 

ods were proposed to estimate optimal values of these 

parameters, based on the autocorrelation function or 
higher order correlation functions of the time series, on 

mutual information, on calculation of the false nearest 

neighbours, or on power spectra [ 16-211. 
The algorithm proposed by Grassberger and Pro- 

caccia (GP) [ 1,3] involves the computation of a cor- 
relation integral whose power-law behaviour is used 
to estimate the dimension of the attractor. The corre- 

lation integral is defined as 

C(&,rz) = .(,1- 1) Igfl H(E- 11 Xi -Xj 1)) 9 

I=1 ,=I 

1+1 

(2) 

where H is the Heaviside function, Xi and Xj are vet- 

tors which locate points on the trajectory that has been 
embedded in a d-dimensional space, ]I ]I represents 
the distance norm which can be either the standard 
Euclidean norm or the maximum norm, and n, is the 
number of vectors, n, = n - d - 1. The correlation 

dimension D2 is defined by the limit 

D2( E, n) = lim lim 
lnC(e,n) 

&--‘On~ca Ins ’ 

or, when it exists, 

D _lim lim dlnC(-cn)/de 
2- 

E’O n--+00 d In e/de 
(4) 

Thus, the power law is reflected as the saturation of the 
curves plotted in d In C ( E, n) /de versus d In E/d& (let 
us introduce the expression “dimensionality diagram” 

for this plot), and should be considered for E -+ 0 and 

n + co. Generalisations of (2) to order-q correlation 

integrals, where q in principle ranges from -oc to 
+oo, have been used to estimate order-q dimensions 

12,41. 
In practice, the sum (2) is taken only for those i’s 

and j’s that are separated by more than z sampling 
times to avoid artificial correlation among consecu- 

tively sampled points on the attractor [ 321. The algo- 
rithm is in fact based on the calculation of the num- 
ber of vectors displaced by a distance of less than E 
from the reference vectors. In our computations, i ref- 

erence vectors are randomly chosen (i = 1, . . . , r; r < 
n) and the distance between them and j vectors (j = 
1 . . , m; m 6 n), separated by more than z points, in 
the set is then calculated. 

2. I. The time series 

The test time series, reconstructed by a sampling 
frequency of fS = 1000 Hz, are obtained from the 
system of uncoupled oscillators 

x,(t) =Alsin(wit+(~i) +...+Assin(wst+as). 

(5) 

The basic frequencies fi (fi = ol/27r) are chosen 
independent over rationals, with values of fi = 6.625, 

f2 = 14.823, f3 = 37.875, f4 = 49.987 and f5 = 
133.123 Hz, while the phases are LL~ = 0, and the 

amplitudes either (i) At = 1 or (ii) AI = I/ fi. 

3. Varying the parameters 

The model based on quasi-periodic time series en- 
ables an unambiguous choice of all the parameters in- 
volved: the sampling time, the number of points, the 
embedding time, the embedding dimension, as well 

as the system complexity. In addition, it mimics to a 
certain extent the time series measured from the car- 
diovascular functions [ 6-81, and hence contributes to 

the a priori knowledge necessary to approach their 
analysis. To learn the role of each of the parameters 
we have undertaken a series of numerical experiments 
[ 221. Here we report only the values of D2 obtained 
for a range of parameters, and for a model complexity 
ranging from a limit cycle, up to a Storus. 

The quantitative value of the correlation dimension 
should be obtained, by definition, at E + 0. In prac- 
tice, it is determined as a slope of the correlation inte- 
gral for small E. One searches for linear regions where 
the slope is constant. Only then can we consider that 
the slope equals the limit value, and that the limits ex- 
ists. This procedure is repeated for each embedding 
dimension. The values obtained are then plotted in 
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6 - 5.65 N = 65536 
5.57 

N = 131072 N = 1000000 

embedding diln~nsion d 
Fig. 1. The values of D2 for a 5torus with Ai = . = AS = 1 calculated for a different number of points. 

Table 1 
Correlation dimension for a limit cycle and a 2-, 3-, 4- and 5-torus 
(A1 = . = As = I) calculated at a different number of points 

Number of basic n Correlation di~nsion D2 

frequencies I 7= 2t, 7= 3ts 7= 4t, 7= 5t, 

1 65536 1.002 1.005 1.005 1.003 
131072 1.003 1.003 1.004 1.002 

2 65536 2.05 2.05 2.06 2.06 
131072 2.05 2.04 2.04 2.04 

3 65536 3.14 3.17 3.17 3.17 
131072 3.09 3.11 3.11 3.09 

4 65536 4.39 4.56 4.56 4.54 
131072 4.32 4.50 4.56 4.56 

5 65536 5.45 5.65 5.66 5.65 
131072 5.40 5.55 5.57 5.60 

1~ 5.26 5.27 5.29 5.29 

the saturation diagram. Values obtained for 5tori with 
Al = 1, for embedding dimensions ranging from d = 2 
to d = 32, are presented in Fig. 1. The quantitative 
value for D2 is usually calculated for some interval 
of d at which the obtained values settle. The values 
summarized in Table 1 are the averages of values ob- 
tained at embedding dimensions at which saturation 
is obtained. For example, D2 for 5-tori is an average 
over values obtained for 16 < d < 32. 

Here, we can seek a confidence interval at each d. 

Ramsey and Yuan [ 231 have already analysed and dis- 

cussed the problem of bias and error bars in dimen- 
sion calculations. We found that it is more important 
to check the linearity of segments in the dimensional- 
ity diagram and the convergence of the values in the 
saturation diagram. This is in fact a check on the ex- 
istence of the limit defined in Eq. (3). 

In spite of the large number of points considered, 
the calculated numbers presented in Fig. 1 and Table 1 
are not integers, as would be expected. Indeed, all 
are higher than the true values. The overestimation 
increases as the system complexity increases. Using 
the same five-dimensional system Jedynak et al. [ 241 
obtained values around 5.5 and argued that they cannot 
even serve as approximations of the correct values. Let 
us, therefore, examine the scales at which the plateau 
in the dimensionality diagram occurs, and the impact 
of the number of points used for the reconstruction of 
an attractor. 

3.1. Why does 5vere~ti~tio~ occur? 

Inspecting Table 1 and Fig. 1 we see that the extent 
of overestimation depends on the number of points 
considered. However, let us first discuss the scaling 
region as it occurs in the dimensionality diagram pre- 
sented in Fig. 2. The scaling regions occurs at lna - 
1 f0.2. But, ford > 6, the values of D2 are greater than 
expected. In fact, all curves tend toward the true value 



A. Stefanovska et al./Physics Letters A 235 (1997) 24-30 21 

-I 0 I 2 3 

In 6) 

Fig. 2. Dimensionality diagram for a 5-torus (Al = = As = I, 
ts=1ms,n=1000000,r=20000,m=40000,z=10and 
r = 21,). The true plateau is at Ins N 0, where the error due to 
an insufficient number of points dominates. Therefore we estimate 
D2 for In E N I and obtain values greater than the true value. 

5, although they become dispersed when approaching 

In E < 0.0, where the limit and the true scaling region 
are to be found. 

To analytically consider the problem of overestima- 
tion on the limit cycle let us make the following as- 

sumptions: 
(i) the attractor is a circle in the phase space 

(Fig. 3a); 
(ii) the number of points n from which the attractor 

is reconstructed is big enough to be considered infinite, 
and 

(iii) the points are equidistantly sampled in time, 
hence their distribution density on the attractor is uni- 

form and is equal to n/2r. 
Within an angle 2~ there are 

ncp n(c) = --p 

points. If we cover the attractor by balls of radius E, 
the corresponding angle is given by the relation 

.sp E 

sm z = 2A’ (7) 

as is evident from Fig. 3a. The above relations yield 

p=2arcsin& 

and 

(8) 

2n 
n(e) = ; arcsin & 

dlnn(s) = d ln[ (2n/r) arcsin( e/2A) ] 

de de 
1 1 1 - 

for the number of points within such a ball. = arcsin( e/2A) Jm 2A ’ 

I 
b 

n 

Fig. 3. For the calculation of the correlation integral we vary E and 
count the number of points inside the ball. An equivalent result 
can be obtained by replacing balk with squares (a). The step 
function represents the actual number of points inside the ball of 
radius E and at a huge number of points is well approximated by 
the continuous function (b). 

Since we consider the number of points on the at- 
tractor to be infinite, the number n(e) of points inside 
the ball is a continuous function. Under the assump- 

tions made, the values of C (a, n) and n(e) are either 
equal or differ by a multiplicative constant only. Then, 
according to the GP algorithm, we can search for the 
derivative of the function In n(e), 

dlnn(e) dlnn(e) de 

dlne = de z-e’ 

We obtain 

(10) 
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ds 

dlne=s. 
(11) 

Let us introduce 4012 = b, so e/2A = sinr. Then for 

?#O 

dlnn(e) sin t tan t 

dine = t&-z& =--?l. 
(12) 

The value of the above expression is strictly greater 
than 1, for all 9 > 0 and hence for all E > 0. Moreover, 

the value of E cannot be arbitrarily small; indeed, we 
are restricted by the number of points with which the 
attractor is reconstructed. By decreasing the radius of 
balls with which we cover the attractor, we come to a 
value at which there are not enough points inside the 

ball. Hence, because 9 # 0 and the mapping from the 
time domain to the phase space is non-linear, the result 
is an overestimation of the dimension. Only in the 

limit do we obtain correct results, since the segment 

on the circle becomes linear. 
We have considered an ideal geometry of the at- 

tractor of the sinusoidal function - a circle. It is more 
probable that it will be reconstructed as an ellipse. In 
one dimension we have long linear segments and short 
strongly non-linear segments. In high-dimensional 

space - in the case of a qu~i-periodic signal - the 

body of the attractor, an n-torus? is a geometrically 
more complicated object with extensive foldings, and 
the overestimation is even more pronounced. More- 

over, when we have a system of oscillators - each one 
of them having a different frequency - there are al- 

ways some for which the phenomenon caused by the 
effect of non-linear mapping from the time domain to 
the phase space becomes pronounced. 

The observed dispersion of the results occurs due 
to the fact that n(o) is a discrete valued function and 
not a continuous one, as presented in Fig. 3b. As we 
continuously decrease the value of E the remaining 
number of points inside the balls also decreases. At a 

certain value of E, the fact that we are dealing with a 
discrete and small number of points results in a large 
relative error due to quantization. This error also oc- 
curs at big E, but is negligible due to the large number 
of points inside the balls. Hence, the only way to avoid 
this problem is to choose relatively large values of E. 
However, this is in contradiction with the fact that, by 
definition of the correlation dimension, E should tend 
toward 0. Since we usually stop at a certain positive 

value of E, a systematic error occurs, as we saw in the 
calculations presented above. 

It could be argued that the phenomenon presented 
above might reflect a behaviour unique to quasi- 
periodic systems. However, this phenomenon occurs 

as a result of finite separability, since E always has 
a positive value. Hence, an overestimation can be 

expected to occur for any attractor. For example, the 

Cantor set embedded in the circle can easily be shown 
to be characterised by the same effect as shown by 

Es. (12). 
Let us note that an underestimation can also occur. 

This phenomenon has been presented by Moller et al. 
[25]. They analysed the digitizing error by varying 

digitizing resolutions, at a const~t number of points, 
and have shown an underestimation of various chaotic 

as well as quasi-periodic attractors when small preci- 
sion is used. 

3.1.1. The number of points 
At this stage one may ask: how many points would 

it be sufficient to take? The importance of the num- 
ber of points used to reconstruct the attractor and to 
calculate the correlation integral has already been ad- 
dressed [ 12-151. Smith’s analysis [ 121 indicates that 

the number of points required to estimate the dimen- 
sion of an attractor to within 5% of its true value in- 
creases at least as fast as ni,, > 42”, where M is the 
greatest integer smaller than the dimension of the set. 

However, Grassberger et al. [ 261 have argued that this 
pessimistic estimate is based on assumptions that are 

not applicable to the correlation dimension. Nerenberg 
and Essex f 131 have also reviewed the criterion pro- 
posed by Smith and have proposed an order of magni- 
tude smaller. A less severe criterion was proposed by 
Procaccia [ 141. He suggested a relation D2, = Inn, 
which means that for a 5-torus we need lo5 points 

- fewer than were taken in our calculations. This re- 
lation does not take into account the scaling region. 

Eckmann and Ruelle [ 151 proposed the following re- 
lation for the largest correctly estimated dimension, 

D&X 
21nn 

=In(llp)’ (13) 

where p = E/E < 1 and E is the diameter of the 
reconstructed attractor. Accordingly, for p = 0.1 we 
need n = 1000 in order to estimate D2 < 6. The 
results we have presented thus far are obtained from 
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considerable larger data sets and are still greater than in the number of points could not substantially im- 
the true values. prove the accuracy of estimation. 

To reliably estimate the 02 we need a sufficiently 
long interval (Emin, cmax). Only then can we determine 

the slope d In C ( E, n) /d In E, which is the estimate of 
the dimension: (e~~~/e~“)~z >> I. For the &tin cho- 
sen, the value of nmin is determined by the diameter 

E of the reconstructed attractor (the upper limit of 
which is bounded above by the peak-to-peak value of 

the time series A, and the dimension of the embed- 
ding space d) , Finally, it is necessary (but not suf- 

ficient) to have at least one point in each hypercube 
(cube or square) with a side a, and for dimension D2 
one needs n 3 ( E/E~,,) Ltz. From this it follows that 

It may be argued that quasi-periodic time series are 
not an appropriate benchmark for the correlation inte- 

gral algorithm. They may have a coherence time that 
is longer than the length of the time series, and this 
can result in long-term correlations. However, for mea- 
sured time series we do not know a priori what type 
of dynamics they contain. They may well also contain 

quasi-periodic dynamics. The choice of quasi-periodic 
test time series was motivated by the fact they resem- 

ble the frequency spectra of measured time-series [ 71. 
Indeed, a number of reports dealing with time series 
of cardiovascular functions (ECG, IHR, blood pres- 
sure), which are all nearly quasi-periodic, have been 

published. In the main, the chaotic time series, such 

as Henon, Lorenz, McKey-Glass, are used as test sig- 
nals (see Refs. [ 30,3 1 ] and references therein). Fur- 

ther, the reconstruction of the phase space using the 

method of delayed coordinates is straightforward for 
qu~i-~riod time series, since both crucial parame- 
ters, r and d, can be precisely determined. 

D2,, 
Inn 

=In(llp), 
(14) 

In this case the value of D2,, 6 6 is reliably estimated 

for p = 0.1 and n = 1000 000. One can use expres- 
sion ( 14) to estimate an order of magnitude only. To 

approach the optimal emin in practice we should first 
calculate the dimension Dz for some value of chn. 

We then decrease emin by a factor k (8~” + &tin/k), 

increase the number of points by a factor kDZ, and re- 

peat the calculations. When the two values differ, the 

influence of folding still remains significant, hence the 

calculated value cannot be considered to be correct. 

4. Summary and discussion 

The effect of overestimation, due to non-linear map- 
ping from the time domain to the phase space, can sub- 
stantially influence the correlation integral. The quan- 
titative characterisation of an attractor reconstructed 

from measured time series may, in particular, be un- 
reliable. The presented results lead to the following 

conclusions. 
(i) The number of points necessary to approach 

the true scaling region may be considered as sufficient 
when a clear scaling region, well beyond the scales in- 

fluenced by non-linear mapping from the time domain 

to the phase space, is obtained. 
(ii) It was already shown that the method of calcu- 

lation of the correlation integral is extremely sensitive 
to the presence of noise, or drift [ 22,27-29,7]. Even a 
small percentage of noise corrupts small scales, where 
the true plateau is to be found. In this case an increase 

The difficulty of using dimensions and similar mea- 

sures to distinguish between deterministic and stochas- 

tic or noise-dominate signals has led a number of 
investigators to propose the use of surrogate time se- 

ries [ 33-351. It was proposed that the correlation in- 
tegral can be used for qualitative characterisation - by 
comparing values obtained from the original time se- 
ries and their surrogates one may distinguish between 

deterministic and stochastic or noise-dominated time 
series. In addition, a great deal of research has been 
focused on the problem of reducing noise from exper- 
imentally obtained time series [ 36-411. However, in 
time series of biological origin the noise usually orig- 

inates from the interference of a number of physio- 
logical functions, since it is not possible to selectively 
measure only one function. Moreover, it is difficult to 
distinguish the noise contribution. Based on our expe- 

riences with measured time series of various cardio- 
vascular functions, which result from at least a five- 
dimensional system [ 6,8], one may infer on a finite- 

dimensionality by comparing correlation integrals of 
original time series and their surrogates [ 71. However, 
a sufficient scaling region to estimate a valid correla- 
tion dimension cannot be obtained. 
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