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Abstract. Time series analysis is commonly applied to both chaotic and stochastic systems, which
are collectively described as turbulence. However, explicitly time-dependent non-autonomous sys-
tems can also generate turbulent dynamics, which makes them useful for describing many phys-
ical phenomena. Nevertheless, many of the methods used to analyse turbulence are based around
autonomous systems. In this paper, time series from the chaotic, stochastic and non-autonomous
Duffing system are analysed using these methods to gauge their suitability to non-autonomous sys-
tems. It is found that time-dependent representations are vitally important in the study of this class
of systems. Moreover, when time-dependence is neglected in the representation a completely deter-
ministic non-autonomous system is often indistinguishable from a stochastic system.
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INTRODUCTION

The concept of turbulence originated in the field of fluid dynamics from the work of
Stokes and Reynolds [1, 2] with later developments by Kolmogorov and others [3, 4, 5].
Though it is still largely associated with this field, turbulent dynamics have grown to
become a unifying theory of systems not only in physics but in chemistry, biology,
meteorology and many other areas.

It therefore seems that the phenomenon has outgrown its original application to high-
dimensional spatio-temporal systems and consequently requires a more general defini-
tion. In this paper we define turbulence as any system that is far from thermodynamic
equilibrium, exhibiting a large, complex distribution of states.

Using this definition, turbulence can be generated through several distinct mecha-
nisms. Perhaps the most well known and studied of these is chaos, where the turbulent
dynamics originate from the exponential growth of small perturbations in the system [6].
Another well-studied class are stochastic systems, where the external forcing by noise
is the cause [7]. However, a third class is also able to produce turbulent dynamics and is
currently the subject of much debate: non-autonomous systems [8].

Non-autonomous systems are defined as being explicitly dependent on time. The most
easily understood forms are transient systems, where the invariant properties of the sys-
tem are clearly time-dependent. However, even stable systems can be non-autonomous
if the defining mechanism of the dynamical equations contain any solely time-dependent
variables which do not rely on the internal dynamics of the system.

In the same way as chaos, turbulence in non-autonomous systems can arise without



the need for external noise. As will be seen, setting the time-dependent variable as a
fully deterministic quasi-periodic function is enough to generate non-chaotic turbulence
in a nonlinear oscillator.

Duffing oscillator

The unforced Duffing oscillator is a 2-dimensional system with a cubic nonlinearity.
It is defined by the differential equation

d2x
dt2 +δ

dx
dt

+βx+αx3 = 0, (1)

where α , β and δ are constants. Here we choose α = 1 and β = −1. The second
dimension is denoted by y = dx

dt .
The equation was originally investigated by Georg Duffing who was studying the real-

world vibrations it could describe [9]. The equation has since been applied and adapted
to produce many different types of dynamics, which are comprehensively described in
the book by Kovačić and Brennan [10]. For β < 0 the trajectory of the unforced system
orbits two fixed points located on the line y = 0 at equal distances from x = 0. For δ > 0
the system is damped, which means the amplitude of the oscillations reduces over time
and eventually settles at one of the fixed points. However, this damping effect can be
offset by external forcing of the system, which can in turn lead to turbulence.

One of the most widely known forms of the forced Duffing system is when it is
periodically forced,

d2x
dt2 +δ

dx
dt

− x+ x3 = γ cos(ωt), (2)

where γ and ω are constants. This added term gives rise to chaos, which was originally
discovered by Yoshisuke Ueda [11, 12]. Ueda used δ = 0.2, γ = 0.3 and ω = 1, which
we adopt here.

Another version of the system is the noise-forced case,

d2x
dt2 +δ

dx
dt

− x+ x3 = ξ η , (3)

where η(t) is a normalized Gaussian white noise variable and ξ =
√

2Dn is a constant
where Dn is the noise intensity; in this case ξ = 0.2 is chosen. With the addition of this
noise term, the system is transformed into a non-deterministic (stochastic) oscillator,
where the apparent randomness of the dynamics originates from an external source.
This form of the Duffing system is also famous for exhibiting a phenomenon known as
stochastic resonance [13], which is a term for the large fluctuations in the dynamics that
result from random switching between orbits around the two fixed points.

A third possibility which has not been studied to the extent of the previous two
examples is the quasi-periodically forced system,

d2x
dt2 +δ

dx
dt

− x+ x3 = γ (sin(2πω1t)+ sin(ω2t)) . (4)



FIGURE 1. Time series of the three test systems from t = 0 to t = 500: (a) Chaotic; (b) Stochastic; (c)
Non-autonomous.

Here the ratio of the frequencies 2πω1/ω2 is an irrational number. This means that
while the forcing term is fully deterministic, it is not periodic. The attractor is therefore
explicitly time-dependent1, as opposed to the periodically forced version of the system
(2) where the position of the trajectory can be plotted at intervals of t = to, to+2π/ω, to+
4π/ω, ... to find the attractor for a particular phase of cos(ωt). The quasi-periodically
forced system can therefore be categorised as a non-autonomous system.

Numerical integration

The test time series are generated using the Heun scheme:

x̃n+1 = xn +h f (tn,xn),

xn+1 = xn +
h
2
( f (tn,xn)+ f (tn+1, x̃n+1)) , (5)

dx
dt

= f (t,x),

where the step h = 10−3 is used. For the stochastic system the algorithm is adjusted
according to Honeycutt [14] to account for the noise term.

Each of the time series are integrated from t = 0 to t = 10000, samples of which are
shown in Figure 1.

PHASE SPACE ANALYSIS

Phase space representations are very useful for understanding the dynamics of non-
linear systems and identifying invariant properties such as the exponents developed
by Aleksandr Lyapunov [15] and the attractor dimensions as defined by Alfred Rényi
[16, 17, 18]. The downside of these kind of representations is that when the conversion to
phase space has been made it is no longer possible to separate the purely time-dependent
(non-autonomous) parts of the system from the time-independent (autonomous) parts.

1 Note however that this time-dependence is still defined by a stationary term.



FIGURE 2. Phase space representations of the forced Duffing system: (a) Chaotic; (b) Stochastic;
(c) Non-autonomous. Shown above are the attractors as seen by removing the time axis from a single
trajectory of the system. Shown below for (a) and (b) are the last points of 10,000 trajectories with different
initial conditions, which were integrated over a period tf − to = 100. Shown below (c) is the evolution of
three trajectories with different initial conditions from to = 0 to tf = 20.

Figure 2 shows phase portraits of the three versions of the forced Duffing system in
the x− y plane. The fractal structure of the attractor for the chaotic system is lost in
the time-independent form, although in both cases the states are spread out across a
large area of phase space. On the other hand, both representations are the same for the
stochastic system, where the Markovian dynamics cause the attractor to be essentially
time-independent.

However, for the non-autonomous system the two representations are the most dis-
similar. In the time-independent form the states are spread out across phase space in the
same way as the chaotic and stochastic systems. In contrast, the time-dependent form
is in fact a singularity which all trajectories converge to, due to the fact that the global
Lyapunov exponent of the system is negative. This significant inconsistency leads to a
fundamental misrepresentation of non-autonomous systems in phase space analysis.

Time delay embedding theorem

The process of transforming a time series x(t) into phase space is known as embed-
ding. The framework of this transformation was developed by Floris Takens [19] and
Ricardo Mañé [20] and involves the construction of an embedding vector for each point
in time:

x(ti) = [x(ti),x(ti + l∆t), . . . ,x(ti +(de −1)l∆t)] , (6)

where de is the embedding dimension and l is an integer, both of which must be chosen
prior to embedding. For de, the embedding theorem states that in order to correctly



reconstruct the system in phase space for any l, the following condition must be met:

de ≥ 2D+1, (7)

where D is the smallest theoretical dimension of phase space for which the trajectories
of the system will not overlap [21].

Estimation of l∆t

A problem with the embedding theorem is that it does not specify any conditions for
the value of l. However, in practice it is necessary to have a delay that maximizes the
spread of the data in phase space [22, 23].

In general, the best time delays are neither extremely short, which causes the values in
the embedding vectors to be essentially the same, or extremely large, which means the
values become uncorrelated random variables [24]. The method devised by Fraser and
Swinney which uses the idea of mutual information [25] is commonly used to estimate
this ideal time delay. For the time series x(t) starting at to and the delayed time series
xd(t) starting at to + l∆t the mutual information is given by

I(l∆t) =
N−l

∑
i=1

Pxxd(x(ti),xd(ti)) log2

(
Pxxd(x(ti),xd(ti))

Px(x(ti))Pxd(xd(ti))

)
, (8)

where Px and Pxd are the probability distributions for x(t) and xd(t) respectively and Pxxd
is the joint probability distribution (the probability of observing a value from one time
series and a value from the other at the same time). The local minima in I(l∆t) provide
values of l which maximise the spread of the trajectory in phase space.

The problem with this method, and indeed the other estimators of l, is that there
are often several minima in I(l∆t) that can be chosen. As already stated, the first
minimum is usually said to be the most appropriate choice since it maintains some
correlation between the dimension variables. However, no matter which choice is made
the dynamics corresponding to timescales smaller than the chosen delay will appear as
noise, which means that some information will inevitably be lost in embedding.

Estimation of de

The condition given in (7) has little meaning when applied to observed time series
where D is not known. For this purpose, the method of false nearest neighbours was
developed as a way of estimating the dimension [26]. For a given de, each embedding
vector is paired with its nearest neighbour, i.e. the one separated by the smallest Eu-
clidean distance Rde :

Rde =([x(ti)− x(tNN)]
2 +[x(ti + l∆t)− x(tNN + l∆t)]2 + . . . (9)

. . .+[x(ti +(de −1)l∆t)− x(tNN +(de −1)l∆t)]2)
1
2 ,



where tNN is the position of the nearest neighbour in the time domain. A new embedding
dimension de + 1 is then used and Rde+1 is now calculated for the same vectors that
were identified as nearest neighbours in the previous embedding. If (R2

de+1 −R2
de
)/R2

de

is greater than some threshold value R2
T then the vector pair are labelled as false nearest

neighbours. The choice of RT is entirely subjective although others have stated that the
algorithm performs well for 10 ≤ RT ≤ 30 [26, 27]. If the percentage of false nearest
neighbours is high (typically > 1% [26]) this implies that other dimensions have been
projected onto the d-dimensional phase space, causing points that would otherwise be
completely separate to appear close together. The procedure can then be repeated for
de +1,de +2, . . . until the percentage of false nearest neighbours is sufficiently small so
that the embedding dimension satisfies a similar condition to (7).

As will be seen, the main issue when estimating the embedding dimension is that
time-dependent non-autonomous terms (including noise) are interpreted as extra au-
tonomous dimensions. At present, the time-delay embedding framework has no way of
distinguishing between the dynamics making up the invariant autonomous attractor of
the system and the purely time-dependent effects.

Correlation integral

One of the most widely used phase space measures is the correlation dimension D2.
An algorithm created by Grassberger and Procaccia [28, 29] may be used to estimate the
dimension directly from the embedded time series. This begins with the computation of
the correlation integral,

C(ε) =
1

N(N −1)

nv

∑
i=1

nv

∑
j=1
j ̸=i

H(ε −||x(ti)−x(t j)||), (10)

where H is the Heaviside step function and nv is the number of embedding vectors. This
integral is simply a sum of the number of “neighbouring” embedding vectors, defined as
those that have an absolute distance ≤ ε . The correlation dimension is then defined as:

D2 = lim
ε→0

lim
N→∞

d(lnC(ε))
d(lnε)

. (11)

In practice the value of D2 is estimated as the plateau where d(lnC(ε))
d(lnε) stays constant as

lnε decreases. However, C(ε) is dependent on the embedding dimension de, so in order
to check the stability of the estimate for D2 the integral must be recalculated for several
embeddings.

Figure 3 shows the correlation integrals for the three test systems. The plateau iden-
tifies a dimension D2 ≈ 2.4 for the attractor of the chaotic system, which is reason-
able since the attractor in Figure 2 appears to be approximately 2-dimensional. For the
stochastic system there is instability around the estimated embedding dimension because
the stochastic dynamics fill any new dimensions, which means a finite dimension cannot
be defined.



FIGURE 3. Correlation integrals for the embedding dimension de estimated by the false nearest neigh-
bours algorithm (black) as well as for de ± 1 (grey): (a) Chaotic system; (b) Stochastic system; (c) Non-
autonomous system.

The method is also unable to find a stable plateau in D2 for the non-autonomous
system. The embedding is in fact including the dynamics of the external forcing in the
autonomous attractor, in the same way that new dimensions are filled with noise in the
stochastic system. The correlation dimension is therefore also difficult to define in non-
autonomous systems.

Karhunen-Loève decomposition

The time-delay embedding theorem is also applied in the Karhuen-Loève expansion,
also known as principal value decomposition [30, 31]. The first step is to compute the
correlation matrix of the embedded time series [32],

C = xT x, (12)

with eigenvectors vi and eigenvalues λi given by:

Cvi = λivi. (13)

The eigenvectors are used to form the rows of a new matrix V and are ordered with
respect to the size of the corresponding eigenvalues, i.e. so that the eigenvector with the
largest eigenvalue makes up the first row of V, the one with the second largest makes up
the second row and so on. The ith mode of the time series decomposition is then given
by x̂i = HiVT

i where Hi is the ith row of the matrix

H = xVT (14)

and Vi is the corresponding row of the matrix V. The number of modes is equal to the
embedding dimension de, with the first mode x̂1 representing the component with the
most energy in the time series. The application of Karhunen-Loève decomposition to the
three test systems is shown in Figure 4. There appears to be very little dependence on
the embedding dimension for eigenvalues of the chaotic system, where the distribution
simply becomes flatter in each case. However, for the stochastic and non-autonomous
systems the distribution of eigenvalues changes in structure for each new embedding,



FIGURE 4. Eigenvalues from Karhunen-Loève decomposition for different embedding dimensions:
(a) Chaotic system; (b) Stochastic system; (c) Non-autonomous system. In each case the eigenvalues have
been normalised by dividing by the sum over all of the eigenvalues.

even after an increase of 5 dimensions. Again, this demonstrates how the time-delay
embedding method is unable to cope with non-autonomous dynamics. It is also apparent
that by using phase space analysis it is easy to mistake a non-autonomous system for a
stochastic one.

FOURIER TRANSFORM

One of the most widely-used forms of time series analysis is the discrete Fourier trans-
form (DFT), which was first developed by Carl Friedrich Gauss around 1805 [33]2. It is
defined as:

F(ω) =
L−1

∑
n=0

f (n)e−
2πiωn

L , (15)

where L is the number of points in the time series f (n). The complex Fourier basis
e−

2πiωn
L contains a sine and cosine function which resolve the amplitude and phase of the

stationary periodic components at each frequency ω . A common convention is to present
the square of the Fourier transform, which gives the power of the Fourier components:

P(ω) = |F(ω)|2. (16)

The DFT transforms a time series from the time domain to the frequency domain. The
transformation is therefore similar to the time-delay embedding method in the way that it
removes the time-dependent effects from the data. This becomes a problem when dealing
with non-stationary time series (whether chaotic, stochastic or non-autonomous) where
the properties of the Fourier components change with time. As can be seen in Figure
5, the completely deterministic oscillations appear indistinguishable from the stochastic
oscillation.

Figure 5 shows Fourier transforms of time series from the three turbulent systems.
The Fourier components have a continuous (although nonuniform) distribution for the

2 Gauss’ research was motivated by work to determine the orbits of asteroids by analysing time series of
their locations and predates the publication of Joseph Fourier’s work on the continuous Fourier transform.



FIGURE 5. Fourier transforms over the range 0-0.3Hz (using seconds for the units of t) for: (a) Chaotic
system; (b) Stochastic system; (c) Non-autonomous system with another plot showing detail over the same
range of frequencies.

chaotic and stochastic systems, which indicates that the time series are not periodic. The
largest spikes in the spectra of the chaotic and non-autonomous systems correspond to
the sinusoidal components of the forcing terms. The other spikes in the Fourier transform
of the non-autonomous system are more ambiguous and in fact the low-power Fourier
components are spread across a wide range of frequencies in the same fashion as the
chaotic and stochastic systems.

Since all three of the time series analysed are non-stationary, the frequency domain
representation provided by the Fourier transform is unclear. Apart from the sinusoidal
forcing components, it is difficult to understand the physical meaning of the Fourier
components. Hence, in the same way as phase space analysis, the removal of time has
resulted in ambiguity in the interpretation of three systems.

COMPLEXITY ANALYSIS

The complexity of a time series is used to describe the amount of disorder or ‘rough-
ness’. The idea is related to fractal dynamics, where the normalised structure over short
timescales resembles the normalised structure over larger timescales. A high fractal sym-
metry means that the shape of the time series as defined by fast fluctuations at small
scales will appear similar to the shape defined by slow fluctuations at large scales. Sim-
ple time series such as a single sine wave have the least fractal symmetry, whereas more
noisy signals with many components have a high fractal symmetry, which consequently
makes this property a good measure of complexity.

A widely used measure of fractal scaling is the fractal dimension, DF . It is defined as
the exponent which dictates the number of similar structures ns at a scale ε contained
within a larger similar structure,

ns ∝ ε−DF . (17)

High fractal dimensions therefore correspond to very ‘rough’ time series, where the
repeated fractal structure contains a lot of detail.

The standard way of measuring fractal symmetry in a time series and to estimate
DF is with detrended fluctuation analysis (DFA) as introduced by Peng et al. [34]. This



FIGURE 6. Detrended fluctuation analysis of time series from the three turbulent systems: (a) Chaotic
system; (b) Stochastic system; (c) Non-autonomous system. The numbers show the values for α calculated
from linear fits (dashed lines).

estimates the self-similarity parameter α , which is defined in the equation,

X(t)≡ aαX
( t

a

)
, (18)

where X(t) is the time series integrated over time (calculated by the cumulative addition
of successive points) and a is the scaling or magnification factor.

In order to estimate α the time series is divided into sections of length n. For each
section the local trend is removed by subtracting a fitted polynomial (usually of first
order [35, 34]). The root mean square fluctuation for the scale equal to n is then given
by,

F(n) =

√
1
N

N

∑
i=1

Yn(ti)2, (19)

where Y (t) is the integrated and detrended time series. The fluctuation F(n) provides
a measure of the amplitude at the corresponding scale which should follow the same
scaling as in (18). By plotting logF(n) against logn, the self-similarity parameter α is
then given by the gradient of the line. The relation between the DFA exponent and the
fractal dimension of the time series is given by DF = 3−α for 1 < α < 2 [36].

Detrended fluctuation analysis of the three time series is shown in Figure 6. The first
slope that occurs at small timescales corresponds to the main oscillatory component and
can be disregarded. For the chaotic system the value of α for the second slope implies
that the direction of fluctuations in X(t) are neither persistent nor anti-persistent, with
dynamics that appear similar to white noise. For the stochastic system the exponent
is determined to be α = 1.15, which is the same as found for correlated noise [35].
However, for the non-autonomous system the scaling of the fluctuations generates a
bumpy slope, which makes it difficult to define α . The simple time-dependent point
attractor of this system should result in an exponent α ≪ 0.5, which would indicate a
high degree of stability (anti-persistence in the direction of fluctuations). For the linear
fit applied in Figure 6 the value α = 0.28 seems to agree, although higher values could
also be found by using other parts of the slope.



WAVELET TRANSFORM

The previous time series analysis methods have been shown to produce ambiguous
results when applied to a non-autonomous system. The main contributing factor in each
case is that the time-dependent properties have been removed from the representation of
the system, resulting in the external non-autonomous components being included in the
autonomous dynamics of the system.

While there is currently no time-dependent embedding method, the Fourier transform
does indeed have a time-dependent counterpart known as the wavelet transform [37].

Wavelets have been developed to give “optimal” time-frequency resolution which is
achieved by using an adaptive window. The continuous wavelet transform is defined by

W (s, t) =
∫ L/2

−L/2
Ψ(s,u− t) f (u)du, (20)

where Ψ(s,u) is known as the mother wavelet, which is scaled according to the param-
eter s to change its frequency distribution and time-shifted according to the parameter
u. Rather than computing a “stand-alone transform” for each time window, the wavelet
transform performs a different calculation depending on both time and frequency (or
more specifically, the scale s). This means a new wavelet and window size is used to
calculate each scale, with a small wavelet / window for high frequencies and larger ones
for low frequencies. Individual oscillations can then be picked out continuously in both
frequency and time.

In order to make direct comparisons with the Fourier transform, the Morlet wavelet
must be used,

Ψ(s,u) = s−1/2e−
u2

2s2 e−
2πiωcu

s , (21)

where s = 1/ω . The parameter ωc is the center frequency, which determines the time-

frequency resolution of the wavelet (ωc = 1 is used in this case). The s−1/2e−
u2

2s2 part
specifies the Gaussian shape of the window and stretching of the wavelet with respect to
s while e−

2πiωcu
s is equivalent to the basis of the Fourier transform.

Figure 7 shows the wavelet transforms of the three systems. For the chaotic and
stochastic systems a random distribution of oscillations at varying frequencies is seen.
However, for the non-autonomous system the oscillations appear much more confined
within the time-frequency plane, with a deterministic structure. In addition, the compo-
nents corresponding to the spikes in Figure 5 are in fact correlated in time, which means
that they are simply harmonics of a single deterministic oscillation. The true nature of
the non-autonomous system is therefore easily identified with the wavelet transform.

CONCLUSION

In this paper we have commented on the analytical framework for the class of turbulent
non-autonomous systems which are often overlooked. Many time series analysis meth-
ods do not take into account the possibility of this class of systems, which means that
the corresponding time series can be indistinguishable from a stochastic system.



FIGURE 7. Amplitude of the continuous wavelet transform of time series from the three test systems:
(a) Chaotic system; (b) Stochastic system; (c) Non-autonomous system. The wavelet transform expands
the plots shown in Figure 5 to include the variations of the spectrum in time, where the peaks correspond
to individual oscillations at a specific time and frequency. The scale is also logarithmic so that the detail at
the lower frequencies can be seen more clearly. The white space at the edges of the time-frequency plane
is where the wavelet time window extends beyond the ends of the time series, giving rise to a ‘cone of
influence’.

As has been emphasised throughout the analysis of the test systems, the solution is to
include time in all representations of turbulent systems. This is of particular importance
in inverse problems, where it may not be known if the system contains a non-autonomous
component. The wavelet transform is one such method which meets this criteria but
other tools have also been developed such as bispectral analysis [38, 39], harmonic
detection [40], windowed phase coherence [41] and Bayesian inference [42]. However,
non-autonomous systems still lack a characterisation similar to that offered by phase
space via the time-delay embedding theorem. Finding a technique to reconstruct the
autonomous part of the attractor from a single time series remains an unsolved problem.

ACKNOWLEDGMENTS

The research presented in this paper was supported by the Engineering and Physical
Sciences Research Council (EPSRC).

REFERENCES

1. G. Stokes, Trans. Camb. Phil. Soc. 9, 8–106 (1851).
2. O. Reynolds, Phil. Trans. R. Soc. 174, 935–982 (1883).
3. A. Kolmogorov, Dokl. Akad. Nauk SSSR 31, 301–305 (1941).



4. B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel, Annu. Rev. Fluid Mech. 39, 447–468 (2007).
5. P. S. Landa, Europhys. Lett. 36, 401–406 (1996).
6. S. H. Strogatz, Nonlinear Dynamics and Chaos, Perseus Books Publishing, Cambridge, MA, USA,

1994.
7. F. Moss, and P. V. E. McClintock, Noise in Nonlinear Dynamical Systems: Vol. 1, Theory of Contin-

uous Fokker-Planck Systems, Cambridge University Press, Cambridge, 1989.
8. P. E. Kloeden, and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical

Soc., 2011.
9. G. Duffing, “Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Be-

deutung.,” in Issues 41-42 of Sammlung Vieweg, F. Vieweg & sohn, 1918.
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