Typical electrophysiological measurements and information they provide

Miraslau Barabash

Lancaster University

14 October 2016

Example: ion channel family in the Jurkat cells

Channels (passive transporters)						
Channel	Selectivi	tyConduct	anter the transfer of the tran	Function in Junited TI	Note	
Kv1.3	К	3-5 (10- 22?)	V (depolarization, Fig. 2) 2,3	V main- tainance, Volume regu- lat	100-400 ICs/cell. main efflux pathway in T cells. Delayed rectifier. Unusu- ally broad sensitivity to pharmacological agents. Raising [Ca], accelerates inactiva- tion. Not the main nathway in our case [4].	
KCa3.1	К	33-50	Ca ²⁺ , Fig. 2 2 3. Adenosine inhib 5	V maint; T cell activa- tion; cytokine production; autoimmune colitis	10-20 channels. Opens rapidly when Ca ²⁺ increases. [slow inactivation, delayed rec- tifier characteristics???]	
Cl (mini)	CI	1-2	Ca-activ?, (osmotic) pressure, hypotonic intra, ATP presence, swelling 23.6-8	Volume regu- lation	~ 10000 channels. Outward rectif. Current is induced with a ~ 1min delay following cell swelling, current is sustained as long as cytosolic ATP is present. f ~ 300Hz. Average surface density 10-100 Cl channels/µm ² .	
Cl (maxi)	CI	300	V (hyperpolarisa- tion)	Volume regu- lation	Time-dependent gating (inactivation). No evidence that these are activated by os- motic stress.[Lewis1993.Check!!!]	
Cl	CI	40	Ca, cAMP 9	Volume regulation. Cytokine production by T cells?	No evidence that these are activated by os- motic stress.[Lewis1993.Check!!!]	
	H ???		pH 10		Speculative. Voltage increases by 47mV if $pH \rightarrow pH + 1 \ (c_H \times 10)$	
TRPM4	Na, K. not Ca Na		Ca ²⁺ -activated, V- gated [2,3] V		revealed by a small fraction (1-5%) of nor-	
TRPM7 (MIC)	Mg, Ca, K, Na		$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mg and Ca homeosta- sis during metabolic variations	mal 1L Outward rectifying, nonspecific to mono- and divalent cations.	
P2X7	Ca, Na, other cations?		ext ATP 11	Ca homeosta- sis		
Ca_V	Ca Ca	~ 7	V 2 mitogen-stimulated		debatable, not well documented $f^{-1} = 0.4 - 0.5s$. Not measurably V-	
CRAC	Ca	9-24 fS	1,12 Ca^{2+} depletion in		dependent. low conductance, inward rectif	
IP_3R (in ER)	Ca		IP ₃	Ca release from ER	In ER's membrane	

Example: ion channel family in the Jurkat cells

		Pumps (acti	ive transporter	s)		
Na/K-	Na/K	ATP 13 14	Na, K mainte-	3 Na out, 2 K in.		
ATPase			nance			
Plasma	Ca	ATP 15	Ca extrusion			
mem-		_	from cytosol			
brane Ca						
ATPase						
SERCA	Ca	ATP		Ca: from cytosol to the lumen of the ER		
Proton	H	ATP (exist in our		H out		
pump		case???)				
Exchangers (secondary active transport)						
Na/H	Na, H	ATP regulated 16-	major pH_i			
		18	regul. Cellu-			
			lar vol			
Cl/	Cl,	18	Volume regul			
HCO_3	HCO ₃					
Na/	Na, K,	??? 18	Volume regul	Na:K:2Cl. Energy from Na-ElChem grad		
K/ 2Cl	2C1			(secondary active transport)		
cotrans-						
porter						
		Other	conductors			
Aquaporin	H_2O	19				
GLUT-1	glucose	20,21	glucose trans-			
			port effector			
Pannexin-	ATP	22	T-cell activa-			
1			tion at the im-			
			mune synapse			

Patch-clamp: major electrophysiological tool

Whole-cell patch-clamp technique

Chemical	ECS concentration (mM)	ICS concentration (mM)
Na ⁺	126	5
K ⁺	6	147
Mg ²⁺	2.5	1.2
Ca ²⁺	1.2	0
Cl ⁻	125	150
GTP	0	0.1
ATP	0	5
HEPES	10	20
Glucose	11	11
Sucrose	67	0

э

A B > A
A
B > A
A

Properties

Peculiarities:

- large pipette
- $V_b \gg V_p \gg V_c$
- operfusion
- Oialysis

Assumptions:

- Constant temperature
- 2 Equal osmolarities
- Equal pH
- Equal hydraulic pressure
- So hardware filtering

Advantages:

- Quick assertion of ion channel populations
- Q Cytosolic environment is controlled
- Extracellular side can be perfused
- Disadvantage: Washout of cytosolic factors (Dialysis),

Separation of required current:

- Shape of the current response
- Orugs (blockers for specific channels and pumps)
- Manipulation of ion concentration. Problem with an unknown channel.

Conductance

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conductance

f(V) or f(Ca, etc)

Voltage dependence

Peak currents

Tail-current analysis

Equilibrium (Nernst) potential: $E^{rev} = \frac{RT}{zF} \ln(\frac{c^e}{c^i})$

Non-stationary noise analysis

Single-channel recordings

GHK: V(C)

Easy and therefore common

$$\phi = \frac{RT}{F} \ln \left[\frac{P_K c_K^e + P_{Na} c_{Na}^e + P_{CI} c_{CI}^i}{P_K c_K^i + P_{Na} c_{Na}^i + P_{CI} c_{CI}^e} \right],$$

2

GHK

Assumptions:

- constant electric field
- ions move under the influence of diffusion and the electric field
- Oncentrations of ions at the edges of the membrane are directly proportional to those in the aqueous solutions.
- The ions access the membrane instantaneously from the intra- and extracellular solutions.
- The membrane is a homogeneous substance
- O The permeant ions do not interact.

Disadvantages:

- Constant field contradicts Poisson's eq.
- 2 Steady. Fixed bulk concentrations.

Polynomial equations to describe ionic current kinetics Functions are more intimately associated with physical realities Many parameters (usually obtained from experimental fit) HH

FitzHugh-Nagumo

$$I = I_p + C_m \frac{\mathrm{d}V_m}{\mathrm{d}t} + \bar{g}_K n^4 (V_m - V_K) + \\ \bar{g}_{\mathrm{Na}} m^3 h (V_m - V_{Na}) + \bar{g}_I (V_m - V_I), \\ \frac{dn}{dt} = \alpha_n (V_m)(1 - n) - \beta_n (V_m) n \\ \frac{dm}{dt} = \alpha_m (V_m)(1 - m) - \beta_m (V_m) m \\ \frac{dh}{dt} = \alpha_h (V_m)(1 - h) - \beta_h (V_m) h$$

- 一司

HH: pros and cons

Current balance equation obtained using Kirchoff's law and relaxation equations for the components in the ionic conductances.

Accurate assumption: K_v^+ channels contain four identical voltage-sensor domains that can activate largely independently.

Assumptions:

- Ionic currents obey Ohm's law
- The channel contains four independent and identical voltage sensors that activate in two steps.
- Channel opening (CO) represents a concerted conformational change that follows but is distinct from voltage-sensor activation.

Limitation:

Does not capture correctly the kinetics of the Na^+ channel.

Cannot account for the stochastic response to current injection (discrete nature of ion channels).

Spatial domain effects

Hydration

No C-V coupling

(LU)

- How the activity of ion channels alters voltage properties?
- Why do fluctuations appear?
- What defines their magnitude?
- How the observed spectrum can be explained?

Briefly: theory is needed.

Simple model: Poisson-Nernst-Planck

$$\frac{\partial c_m}{\partial t} = -\nabla \mathbf{J}_m, \ \mathbf{J}_m = -D_m \left(\nabla c_m - \frac{z_m e}{k_B T} c_m \mathbf{E} \right) + \mathbf{j}_m,$$
$$\nabla \varepsilon \mathbf{E} = -\nabla (\varepsilon \nabla \phi) = 4\pi \varrho = 4\pi e \sum_m z_m c_m,$$

PNP: Pros and cons

Advantages:

- from profound physical principles
- elf-consistent
- Somputationally cheap
- I-V curves. Detection of a given ion species.

Faults:

- Ontinuous. Not applicable in narrow channels.
- O saturation
- So self-energy barrier
- Spontaneous gating only. No voltage gating.

PNP: main result

14 October 2016 23 / 24

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

(LU)