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Electrons in bilayer graphene
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Abstract

Electrons in bilayer graphene possess an unusual property: they are chiral quasiparticles characterized by Berry phase 2π . We review the
tight-binding model of bilayer graphene which determines the band structure and low-energy quasiparticle properties of this material and we
describe the optical manifestation of the existence of a pair of split-bands and low-energy branches in the bilayer spectrum. Then, we analyze the
stability of a bilayer with respect to a ferroelectric transition and we model the self-consistent control of the interlayer asymmetry gap induced by
a transverse electric field in a graphene-based field-effect transistor.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Following the fabrication of monolayer graphene [1], the
observation of an unusual sequencing of quantum Hall effect
plateaus [2] was explained in terms of Dirac-like chiral
quasiparticles with Berry phase π [3–6]. Subsequently, bilayer
graphene became a subject of intense interest in its own right.
This followed the realization that the low energy Hamiltonian
of a bilayer describes chiral quasiparticles with a parabolic
dispersion and Berry phase 2π [7] as confirmed by quantum
Hall effect [8] and ARPES measurements [9].

The electronic band structure of bilayer graphene has been
modelled using both density functional theory [10–12] and the
tight-binding model [13,7,14–17]. It has been predicted [7] that
asymmetry between the on-site energies in the layers leads
to a tunable gap between the conduction and valence bands.
The dependence of the gap on external gate voltage has been
modelled taking into account screening within the tight binding
model [16,17,12] and such calculations appear to be in good
agreement with ARPES measurements [9], observations made
in the regime of the quantum Hall effect [17], and density
functional theory calculations [12].
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The tight-binding model of bilayer graphene is reviewed
in Section 2, including trigonal warping effects. Section 3
explains how the optical absorption coefficient of bilayer
graphene is influenced by the presence and dispersion of
pairs of electronic bands [18,19], in contrast to the featureless
absorption coefficient of monolayer graphene. We obtain
the effective low energy Hamiltonian of bilayer graphene
in Section 4 and we show that it is dominated by chiral
quasiparticles with a parabolic dispersion and Berry phase 2π .
Section 5 describes the opening of a gap in bilayer graphene
due to layer asymmetry with a demonstration that an undoped,
gapless bilayer is stable with respect to the opening of a
gap, followed by a calculation using a self-consistent Hartree
approximation to describe the control of the gap in the presence
of an external gate.

2. The tight-binding model of bilayer graphene

We consider bilayer graphene to consist of two coupled
hexagonal lattices with inequivalent sites A1, B1 and A2, B2
on the bottom and top graphene sheets, respectively, arranged
according to Bernal (A2–B1) stacking: as shown in Fig. 1(a),
every B1 site in the bottom layer lies directly below an
A2 site in the upper layer, but sites A1 and B2 do not
lie directly below or above a site in the other layer. We
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Fig. 1. (a) Schematic of the bilayer lattice containing four sites in the unit cell:
A1 (white circles) and B1 (grey) in the bottom layer, and A2 (grey) and B2
(black) in the top layer. (b) Schematic of the low energy bands near the K
point obtained by taking into account intralayer hopping with velocity v, B1A2
interlayer coupling γ1, A1B2 interlayer coupling γ3 [with v3/v = 0.1] and
zero layer asymmetry 1.

employ the tight-binding model of graphite [20] by adapting
the Slonczewski–Weiss–McClure parameterization [21,22] of
relevant couplings in order to model bilayer graphene. In-plane
hopping is parameterized by coupling γA1B1 = γA2B2 ≡ γ0
and it leads to the in-plane velocity v = (

√
3/2)aγ0/h̄ where

a is the lattice constant. In addition, we take into account the
strongest inter-layer coupling, γA2B1 ≡ γ1, between pairs of
A2–B1 orbitals that lie directly below and above each other.
Such strong coupling produces dimers from these pairs of
A2–B1 orbitals, leading to the formation of high energy bands
[7]. We also include weaker A1–B2 coupling γA1B2 ≡ γ3
that leads to an effective velocity v3 = (

√
3/2)aγ3/h̄ where

v3 � v. Here, we write the Hamiltonian [7] near the centres
of the valleys in a basis corresponding to wave functions
Ψ = (ψA1, ψB2, ψA2, ψB1) in the valley K [23] and of Ψ =

(ψB2, ψA1, ψB1, ψA2) in the valley K̃ :

H = ξ
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where π = px + ipy , πĎ
= px − ipy , p = (px , py) ≡

p(cosφ, sinφ) is the momentum measured with respect to the
K point, ξ = +1(−1) labels valley K (K̃ ). The Hamiltonian
takes into account asymmetry 1 = ε2 − ε1 between on-site
energies in the two layers, ε2 =

1
21, ε1 = −

1
21.

At zero magnetic field, the Hamiltonian H has four valley-
degenerate bands [7], ε(α)± (p), α = 1, 2, with
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They are plotted in Fig. 1(b) for 1 = 0 and v3/v = 0.1. The
dispersion ε(2)± describes two bands with energies ε(2)+ ≥ γ1 and

ε
(2)
− ≤ γ1: they do not touch at the K point. These bands are the
result of strong interlayer coupling γA2B1 ≡ γ1 which forms
‘dimers’ from pairs of A2–B1 orbitals that lie directly below
and above each other [7].

The dispersion ε
(1)
± (p) describes low energy bands that

touch at the K point in the absence of layer asymmetry 1 = 0.
In the intermediate energy range, 1

4γ1(v3/v)
2, |1| < |ε1| < γ1,

it can be approximated [7] with

ε
(1)
± ≈ ±

1
2
γ1

[√
1 + 4v2 p2/γ 2

1 − 1
]
. (3)

This interpolates between a linear spectrum |ε
(1)
± | ≈ vp at high

momenta and a quadratic spectrum |ε
(1)
± | ≈ p2/2m, where

m = γ1/2v2. Such a crossover happens at p ≈ γ1/2v, which
corresponds to the carrier density n∗

≈ γ 2
1 /(4π h̄2 v2). This

is lower than the density at which the higher energy band
ε(2) becomes occupied n(2) ≈ 2γ 2

1 /(π h̄2 v2) ≈ 8n∗. Using
experimental graphite values [22] gives n∗

≈ 4.36×1012 cm−2

and n(2) ≈ 3.49 × 1013 cm−2. The estimated effective mass m
is light: m = γ1/2v2

≈ 0.054me.

3. Optical absorption of bilayer graphene

The electromagnetic field absorption in graphene has been
studied in a number of publications [24,18,19,25,26]. We show
that the bilayer absorption coefficient can be described as

g2 = (2πe2/h̄c) f2(ω), (4)

and it is qualitatively different from the featureless monolayer
absorption coefficient g1 = πe2/h̄c, since g2 reflects the
presence and dispersion of two pairs of bands in bilayer
graphene [18,19] as described in Section 2 and Fig. 1(b).

We characterize the polarization of the EM field Eω =

`Ee−iωt by denoting the vector `⊕ = (lx − ily)/
√

2 to
correspond to right-hand circular polarization and the vector
`	 = (lx + ily)/

√
2 to be the left-handed circularly polarized

light. In a 2D electron gas with conductivity σ(ω) �

c/2π , absorption of an EM field arriving along the direction
antiparallel to a magnetic field can be characterized by the ratio
of the Joule heating and the energy flux S = cE×H/4π = −Slz
transported by the EM field so that g ≡ Ei E∗

jσi j (ω)/S. Using
the Keldysh technique, we express

g =
8e2

cω
R

∫
Fdε
N

T̂r
{
υ̂i`i Ĝ

R(ε)υ̂ j`
∗

j Ĝ
A(ε + ω)

}
,

where v̂ = ∂pH is the velocity operator, T̂r includes the
summation both over the sublattice indices “tr” and over single-
particle orbital states, N is the normalization area of the sample
and F = nF(ε) − nF(ε + ω) takes into account the occupancy
of the initial and final states and includes spin and valley
degeneracies.

We write the retarded and advanced Green’s functions of
electrons in the bilayer as Ĝ R/A(p, ε) = [ε±ih̄/(2τ)−H(p)]−1

and the trace operation as T̂r =
∫

d2p N
(2π h̄)2

tr. Neglecting

the momentum transfer from light (since ε/c ∼ 3 × 10−3),
reproduces [24,25] the constant absorption coefficient g‖

1 =
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Fig. 2. Absorption coefficient of bilayer and monolayer graphene in the optical
range of frequencies. The insets illustrate the quasiparticle dispersion branches
in the vicinity of εF and possible optical transitions.

πe2h̄c ( f1 =
1
2 ) in monolayer graphene. Taking into account

all four bands in the bilayer we arrive at the expression for
the absorption coefficient for light polarized in the plane of the
graphene sheet:

g‖

2 =
2πe2

h̄c
f2(Ω), Ω ≡

h̄ω

γ1
>

2|εF|

γ1
, (5)

f2 =
Ω + 2

2(Ω + 1)
+
θ(Ω − 1)

Ω2 +
(Ω − 2)θ(Ω − 2)

2(Ω − 1)
,

where θ(x < 0) = 0 and θ(x > 0) = 1 which agrees with
the calculation by Nilsson et al. [18] in the clean limit and
T = 0. The frequency dependence [27] of the bilayer optical
absorption is illustrated in Fig. 2 in comparison to that in a
monolayer. It is the electron–hole excitation between the low
energy band ε(1)± and the split band ε(2)± which provides the
structure in the vicinity of h̄ω = γ1 (γ1 ≈ 0.4 eV [22]). At
high photon energies, h̄ω � γ1, the frequency dependence
saturates at f = 1. The absorption coefficient for the left- and
right-handed light are the same over the whole spectral interval,
so Eq. (5) is also applicable to light linearly polarized in the
graphene plane.

4. Effective low energy Hamiltonian

To describe the transport properties of bilayer graphene, it
is convenient to use a low energy Hamiltonian that describes
effective hopping between the non-dimer sites, A1–B2, i.e.
those that do not lie directly below or above each other and are
not strongly coupled by γ1. This two component Hamiltonian
was derived in [7] using Green’s functions. Alternatively
(and equivalently), one can view the eigenvalue equation of
the four component Hamiltonian equation (1) as producing
four simultaneous equations for components ψA1, ψB2, ψA2,
ψB1. Eliminating the dimer state components ψA2, ψB1 by
substitution, and treating γ1 as a large energy, gives the
two component Hamiltonian [7] describing effective hopping
between the A1–B2 sites:

Ĥ2 = −
1

2m

(
0

(
πĎ
)2

π2 0

)
+ ĥw + ĥa; (6)

ĥw = ξv3

(
0 π

πĎ 0

)
, where π = px + ipy;

ĥa = −ξ1

[
1
2
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)
−
v2

γ 2
1

(
πĎπ 0

0 −ππĎ

)]
.

The effective Hamiltonian Ĥ2 is applicable within the energy
range |ε| < 1

4γ1. In the valley K , ξ = +1, we determine
Ψξ=+1 = (ψA1, ψB2), whereas in the valley K̃ , ξ = −1,
the order of components is reversed, Ψξ=−1 = (ψB2, ψA1).
The Hamiltonian Ĥ2 describes two possible ways of A1 
 B2
hopping. The first term takes into account A1 
 B2 hopping
via the A2B1 dimer state. Consider A1 to B2 hopping as
illustrated with the thick solid line in Fig. 1(a). It includes three
hops between sites: an intralayer hop from A1 to B1, followed
by an interlayer transition via the dimer state B1A2, followed
by an intralayer hop from A2 to B2. Since the two intralayer
hops are both A to B, the first term in the Hamiltonian contains
π2 or (πĎ)2 on the off-diagonal with the mass m = γ1/2v2

reflecting the energetic cost γ1 of a transition via the dimer
state. This term in Ĥ2 yields a parabolic spectrum ε = ±p2/2m
with m = γ1/2v2. It has been noticed [7] that quasiparticles
described by it are chiral: their plane wave states are eigenstates
of an operator σn2 with σn2 = 1 for electrons in the conduction
band and σn2 = −1 for the valence band, where n2(p) =

(cos(2φ), sin(2φ)) for p = (p cosφ, p sinφ). Quasiparticles
described by this term acquire a Berry phase 2π upon an
adiabatic propagation along a closed orbit, thus charge carriers
in a bilayer are Berry phase 2π quasiparticles, in contrast to
Berry phase π particles in a monolayer [5].

The second term ĥw in the Hamiltonian equation (6)
describes weak direct A1B2 coupling, γA1B2 ≡ γ3 � γ1.
This coupling γA1B2 ≡ γ3 leads to the effective velocity
v3 = (

√
3/2)aγ3/h̄ where v3 � v, Eq. (2). In a similar way

to bulk graphite [21,28], the effect of coupling γ3 is to produce
trigonal warping, which deforms the isoenergetic lines along
the directions φ = φ0, as shown in Fig. 3(a). For the valley K ,
φ0 = 0, 2

3π and 4
3π , whereas for K̃ , φ0 = π , 1

3π and 5
3π .

The effective low energy Hamiltonian equation (6) yields the
following energy for 1 = 0,

ε
(1)2
± ≈ (v3 p)2 −

ξv3 p3

m
cos (3φ)+

(
p2

2m

)2

, (7)

which agrees with Eq. (2) in the low energy limit |ε| � γ1. At
very low energies |ε| < εL =

1
4γ1(v3/v)

2
≈ 1 meV, the effect

of trigonal warping is dramatic. It leads to a Lifshitz transition:
the isoenergetic line is broken into four pockets, which can
be referred to as one “central” and three “leg” parts [28,7,29].
The central part and leg parts have minimum |ε| =

1
2 |1| at

p = 0 and at |p| = γ1v3/v
2, angle φ0, respectively. For

v3 � v, we find [7,22] that the separation of the 2D Fermi
line into four pockets would take place for very small carrier
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Fig. 3. (a) Schematic of the Fermi line at low energy in the valley K , ξ = 1, for
different values of the Fermi energy. Note that the asymmetry of the Fermi line
at the other valley, ξ = −1, is inverted. (b) The low energy bands plotted along
the line py = 0. They are obtained by taking into account intralayer hopping
with velocity v, B1A2 interlayer coupling γ1, A1B2 interlayer coupling γ3
[with v3/v = 0.1] and zero layer asymmetry 1. Dashed lines show the bands
obtained by neglecting γ3 [i.e. with v3/v = 0].

densities n < nL ∼ (v3/v)
2 n∗

∼ 1 × 1011 cm−2. In this
estimation of nL , the constant of proportionality is of the order 1
as determined by the strongly warped shape of the Fermi line at
the Lifshitz transition. For n < nL , the central part of the Fermi
surface is approximately circular with area Ac ≈ πε2/(h̄v3)

2,
and each leg part is elliptical with area A` ≈

1
3Ac. The low

energy part of the band structure is plotted in Fig. 3(b) along
the line py = 0. Taking the line py = 0, φ = 0, at the first

valley ξ = 1 gives ε(1)± ≈ ±|v3 p − p2/(2m)|. It shows that,
at zero energy, the leg pocket of the Fermi surface develops
at p = 2mv3 = γ1v3/v

2, Fig. 3(a), and that the overlap
between the conduction and valence bands, Fig. 3(b), is given
by 2εL ≈ (γ1/2)(v3/v)

2
≈ 2 meV [15] using γ1 ≈ 0.4 eV and

v3/v ≈ 0.1.

5. Stability of the bilayer against ferroelectric ordering and
a voltage-controlled gap in the spectrum

The parameter 1 in the Hamiltonian equation (1) takes
into account a possibly-externally-controlled asymmetry 1 =

ε2 − ε1 between on-site energies in the two layers, ε2 =
1
21,

ε1 = −
1
21. The electronic bands near the K point, Eq. (2), are

shown in Fig. 4(a) for a large value of the layer asymmetry 1.
For simplicity, we neglect A1B2 interlayer coupling γ3:

ε
(α)2
± ≈

γ 2
1

2
+
12

4
+ v2 p2

+ (−1)α

√
γ 4

1

4
+ v2 p2

(
γ 2

1 +12
)
.

The energies of the bands exactly at the K point are |ε
(2)
± (p =

0)| =

√
γ 2

1 +12/4 and |ε
(1)
± (p = 0)| = |1|/2: the low

energy bands, ε(1)± , are split by the layer asymmetry 1 at the
K point [30].

In an asymmetrical bilayer, the electronic densities on the
individual layers, n1 and n2, are given by an integral with
respect to momentum p = h̄|k| over the circularly symmetric
Fermi surface, taking into account the relative weight of the
Fig. 4. (a) Schematic of the electronic bands near the K point in the presence
of finite layer asymmetry 1 (for illustrative purposes a very large asymmetry
1 = γ1 is used) obtained by taking into account intralayer hopping with
velocity v and B1A2 interlayer coupling γ1, but neglecting A1B2 interlayer
coupling γ3. Dotted lines show the bands for zero asymmetry 1 = 0. (b)
Dependence of the function fΛ(x), Eq. (14), describing the density dependence
of the layer asymmetry on the argument x for different values of the screening
parameter Λ.

wave functions:

n1(2) =
2

π h̄2

∫
p dp

(
|ψA1(2) (p) |

2
+ |ψB1(2) (p) |

2
)
, (8)

where we have included a factor of four to take into account
spin and valley degeneracy. By determining the wavefunction
amplitudes on the four separate atomic sites we find

n1(2) =

∫
dp p g∓(ε, p), (9)

g∓(ε, p) =
ε ∓1/2

π h̄2 ε

[(
ε2

−12/4
)2

∓ 2v2 p2ε1− v4 p4(
ε2 −12/4

)2
+ v2 p212 − v4 p4

]
,

where the minus (plus) sign is for the first (second) layer.
We establish the stability of an undoped, gapless bilayer

system with respect to ferroelectric ordering (redistribution
of charge density between the two layers) by comparing the
gain in the total energy due to the opening of a gap in the
low energy spectrum with the energetic cost due to Coulomb
energy Ec equal to that of a capacitor with oppositely charge
plates. We estimate the charging energy by approximating
the excess electronic densities on the individual layers, n1
and n2, as uniformly distributed within infinitesimally thin 2d
layers. Then, the charging energy is Ec = Q2/2Cb where
Q = en1L2

= −en2L2 is the excess charge on one of the
layers in the presence of finite asymmetry 1 = ε2 − ε1, and
Cb = εrε0L2/c0 is the capacitance of a bilayer with interlayer
separation c0 and area L2. For an undoped system, with Fermi
energy εF = 0 and zero excess total density n1 = −n2, we only
need to consider the valence bands ε(1)− and ε(2)− . On integrating
Eq. (9) from zero momentum to a large momentum p∞, and
using an expansion in 1/γ1, we find that the change in the
density of the valence bands for finite1, as compared to1 = 0,
is

n1(2) ≈ ±
γ11

4π h̄2 v2
ln
(

4γ1

|1|

)
, (10)
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and

Ec ≈
e2

32π2Cb

(
L2γ 2

1

h̄2 v2

)(
L212

h̄2 v2

)
ln2
(

4γ1

|1|

)
. (11)

The change of the total single-particle energy may be
estimated by integrating the valence bands energies, ε(1)− and

ε
(2)
− , with respect to momentum over the circularly symmetrical

Fermi surface:

E ≈
2L2

π h̄2

∫
p dp

[
ε
(1)
− (1)+ ε

(2)
− (1)− ε

(1)
− (0)− ε

(2)
− (0)

]
.

On integrating from zero momentum to a large momentum p∞,
and expanding in1/γ1, the change in the single particle energy
for finite 1, as compared to 1 = 0, is

E ≈ −
γ1

8π

(
L212

h̄2 v2

)[
1
2

+ ln
(

4γ1

|1|

)]
. (12)

The logarithmic dependence of the density equation (10)
appears as the square of the infrared logarithm in the charging
energy equation (11). Since the single particle energy equation
(12) contains only a single infrared logarithm, the large
energetic cost of charging an undoped bilayer ensures stability
with respect to the opening of a gap in the absence of an applied
external electric field.

The gap 1 between the conduction and valence bands
arises from layer asymmetry so that, in contrast to monolayer
graphene, there is a possibility of tuning the magnitude of the
gap using external gates. Indeed, a gate is routinely used in
experiments to control the density of electrons n on the bilayer
system [1,2,8] and, in general, this will produce a simultaneous
change in 1. In the following we use a self-consistent Hartree
approximation to determine the electronic distribution on the
bilayer and the resulting band structure in the presence of an
external gate.

As shown in Fig. 5, we consider the graphene bilayer,
with interlayer separation c0, to be located a distance d from
a parallel metallic gate. The application of an external gate
voltage Vg = end/ε′rε0 induces a total excess electronic density
n = n1 + n2 on the bilayer system where n1 (n2) is the
excess density on the layer closest to (furthest from) the gate
(we use SI units). Here ε0 is the permittivity of free space,
ε′r is the dielectric constant of the material between the gate
and the bilayer, and e is the electronic charge. We assume that
the screening of the effective charge density ρ+ = en from
the metallic gate is not perfect, leading to an excess electronic
density n2 on the layer furthest from the gate. Considering a
Gaussian surface, such as that shown with the dashed lines in
Fig. 5, shows that the excess density n2 gives rise to an electric
field with magnitude E = en2/εrε0 between the layers where
εr is the nominal dielectric constant of the bilayer. There is a
corresponding change in potential energy 1U = e2n2c0/εrε0
that determines the layer asymmetry [16]:

1(n) = ε2 − ε1 ≡
e2n2c0

εrε0
. (13)
Fig. 5. Schematic of the graphene bilayer, with interlayer separation c0, located
a distance d from a parallel metallic gate. The gate voltage Vg induces a total
excess electronic density n = n1 + n2 on the bilayer system where n1 (n2) is
the excess density on the layer closest to (furthest from) the gate. The dashed
line shows a Gaussian surface, from which it can be deduced that the magnitude
of the electric field between the layers of the bilayer is E = en2/εr ε0.

In terms of the capacitance of a bilayer of area L2, Cb =

εrε0L2/c0, this may be written 1(n) = e2n2L2/Cb.
We self consistently calculate the excess densities n1, n2,

n = n1 + n2, Eq. (9), and the gap 1, Eq. (13). This has been
done numerically in Ref. [16]. Analytically, for moderately low
density, 4π h̄2 v2

|n| < γ 2
1 , we find

1 ≈
e2L2n

2Cb
fΛ

(
h̄2 v2π |n|

γ 2
1

)
, (14)

fΛ (x) ≈
1

1 + Λ
(

x −
1
2 ln x

) .
The function fΛ(x) is plotted in Fig. 4(b) for different values

of the dimensionless parameter Λ = e2L2γ1/(2π h̄2 v2Cb)

which describes the effectiveness of the interlayer screening of
the bilayer. The limit Λ → 0 describes poor screening when
the density on each layer is equal to n/2 whereas for Λ → ∞

there is excellent screening, the density lies solely on the layer
closest to the external gate and1 = 0. Note that fΛ(x) → 0 as
x → 0 because of the logarithm, meaning that the effectiveness
of interlayer screening increases upon lowering density. Using
typical experimental parameters [22] we find Λ ≈ 1.3. We
estimate that the addition of density n ∼ 1012 cm−2 yields a
gap 1 ∼ 10 meV [31].

6. Conclusions

We reviewed the results of tight-binding model studies of
bilayer graphene and its low-energy electronic band structure.
The optical absorption coefficient of a bilayer displays features
related to the band structure on the energy scale of the order
of the interlayer coupling γ1 ≈ 0.4 eV [18,19], in contrast to
the featureless absorption coefficient of monolayer graphene.
At much lower energies, εL ∼ 1 meV, trigonal warping of the
band structure might produce a Lifshitz transition in which the
isoenergetic line about each valley is broken into four pockets.

Inter-layer asymmetry creates a gap between the conduction
and valence bands: bilayer graphene is a semiconductor with a
tuneable gap of up to about 0.4 eV. However, by comparing
the charging energy with the single particle energy, it is
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possible to show that an undoped, gapless bilayer is stable with
respect to the spontaneous opening of a gap via a ferroelectric
transition. A self-consistent Hartree approximation was used
to determine the density distribution of the two layers when
the density n is varied using an asymmetrically placed gate,
resulting in a density dependent gap 1(n). Control of the gap
has been modelled using the tight-binding model [16,17,12]
and such calculations appear to be in good agreement with
ARPES measurements [9], observations made in the regime
of the quantum Hall effect [17], and density functional theory
calculations [12].

The use of a single gate modulates the density and the
gap simultaneously, but it should be possible to independently
control the density and the gap by employing both a top and
a bottom gate. This suggests a route to new nanoelectronic
devices defined within a single sheet of gated bilayer graphene.
In particular, one can use a combination of top and bottom gates
to control the asymmetry gap in the bilayer spectrum and to
define an array of quantum dots on a sizeable bilayer sheet. By
localizing electrons on such dots and electrically controlling
their coupling, this may enable one to produce arrays [32] of
electron spin qubits for quantum information processing [33].
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