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Ab initio computational methods for electronic transport in nanoscaled systems are an invaluable tool for the
design of quantum devices. We have developed a flexible and efficient algorithm for evaluating I-V character-
istics of atomic junctions, which integrates the nonequilibrium Green’s function method with density functional
theory. This is currently implemented in the package SMEAGOL. The heart of SMEAGOL is our scheme for
constructing the surface Green’s functions describing the current-voltage probes. It consists of a direct sum-
mation of both open and closed scattering channels together with a regularization procedure of the Hamiltonian
and provides great improvements over standard recursive methods. In particular it allows us to tackle material
systems with complicated electronic structures, such as magnetic transition metals. Here we present a detailed
description of SMEAGOL together with an extensive range of applications relevant for the two burgeoning fields
of spin and molecular electronics.
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I. INTRODUCTION

The study of electronic transport through devices com-
prising only a handful of atoms is becoming one of the most
fascinating branch of modern solid-state physics. The field
was initiated with the advent of the scanning tunneling
microscope1 �STM� and at present comprises a multitude of
applications which span several disciplines and encompass
different technologies, from building blocks for revolution-
ary computer architectures, to disposable electronics, to di-
agnostic tools for genetically driven medicine. Clearly many
of these devices will soon change and enhance the quality of
our daily life.

Prototypes of molecular memories2,3 and logic gates4,5

have been already proposed, suggesting a possible roadmap
to the post-silicon era. Ideally, if demonstrated fully func-
tional, these could produce future generations of computers,
together with magnetic data storage devices exceeding the
Tbit/ in.2 storage limit. The readout of such high-density data
storage media might be achieved using nanoscale devices
with magnetic atomic point contacts.6,7

At the same time hybrid molecular devices are becoming
increasingly popular in multifunctional sensor design, dem-
onstrating a sensitivity orders of magnitude superior to that
achievable with conventional methods. These molecular de-
vices include, for example, carbon nanotubes detectors for
NO2 �Ref. 8� and nerve agents,9 nanowire-based virus
detectors10 and chemical sensors.11 The near future should
see the development of on-chip nanolabs able to sense a
particular signature of gene or protein expression and there-
fore be able to diagnose various diseases. These will be for-
midable tools for the study of biological systems and in the
field of preventive medicine.12

In addition to this large experimental activity an equally
large effort has been devoted to the development of efficient
computational methods for evaluating I-V characteristics of
nanoscale devices. This is quite a remarkable theoretical
challenge since advanced quantum transport algorithms must

be combined with state-of-the-art electronic structure meth-
ods. Ideally these tools should be able to include strong cor-
relation as well as inelastic effects, and they should be suit-
able for describing large systems �easily scalable methods�.
Furthermore, in order to compare directly to experiments de-
tailed knowledge of the atomic configuration is needed.

The modern theory of quantum transport has developed a
range of methods for calculating transport in nanoscale con-
ductors. Broadly speaking, these can be divided into two
main classes: �1� steady-state algorithms and �2� time-
dependent schemes. The first are based upon the assumption
that, regardless of the details of a possible transient, a steady
state is always achieved. The current through the entire de-
vice is calculated as a balance of currents entering and leav-
ing a given scattering region, either using scattering
theory13–19 or by solving a master equation.20–22 A multitude
of variations over this generic scheme are available,23 de-
pending on the underlying assumption leading to the steady
state, the details of the electronic structure method em-
ployed, and the way in which the external potential is intro-
duced in the calculation. Interestingly most of the methods
can be demonstrated equivalent in the case of noninteracting
electrons,24 although this is not demonstrated for the inter-
acting case. Among these algorithms a particular place is
occupied by implementations of the nonequilibrium Green
function �NEGF� method13–16 within density functional
theory25,26 �DFT�. This approach, which is based on equilib-
rium DFT to describe the electronic structures, has the ad-
vantage of being conceptually simple, and computationally
easy and versatile to implement.27–31

Time-dependent methods are at an earlier stage of devel-
opment. These investigate the time evolution of the elec-
tronic charge density of a system, brought out of equilibrium
by a time-dependent perturbing potential. To the best of our
knowledge, two fundamentally different methods have been
proposed to date. The first considers infinite nonperiodic sys-
tems, with an external potential introduced as a time depen-
dent perturbation.24,32 The time evolution of the density ma-
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trix is studied with time-dependent density functional
theory33,34 �TDDFT�. An alternative approach consists of
placing the system of interest in a large capacitor. Such a
capacitor is charged at t=0, and the time-dependent decharg-
ing process is investigated.35,36 Generally speaking these
methods are computationally intensive, since the need to per-
form the time evolution adds to the computational overheads
of standard static schemes. However, they should be able to
address transport limits, which are otherwise difficult to de-
scribe. Interestingly, important information can be extracted
from the static limit of the time-dependent problem37,38 and
this can help in designing more accurate static methods and
in understanding their limitations.

Here we present in details our recently developed quan-
tum transport code SMEAGOL.39 SMEAGOL is a DFT imple-
mentation of the nonequilibrium Green’s function method,
which has been specifically designed for magnetic materials.
The main core of SMEAGOL is our original technique for
constructing the leads self-energies,40 which avoids the stan-
dard problems of recursive methods13 and allows us to de-
scribe devices having current-voltage probes with a compli-
cated electronic structure. In addition, SMEAGOL has been
constructed to be a modular and scalable code, with particu-
lar emphasis on heavy parallelization, to facilitate large-scale
simulations. In its present form SMEAGOL is parallel over k
space, real space, and energy and furthermore it can deal
with spin-polarized systems, including spin noncollinearity.
A partial description of the code has already been provided,41

which should be incorporated with this more detailed de-
scription.

The paper is organized as follows. In the next section we
introduce our method and its main technical implementa-
tions. In particular we set the problem, explain how to con-
struct the leads self-energies, and describe the strategy used
for calculating the electrostatic potential. Then we present a
series of calculations for systems relevant to either spin or
molecular electronics. These address specific aspects of
SMEAGOL such as the electrostatics, the spin polarization, and
the spin noncollinearity. Finally in the appendixces we de-
scribe in more detail the self-energy algorithm, we recall the
theoretical foundations of the NEGF formalism, and we es-
tablish a connection with TDDFT.

II. NONEQUILIBRIUM TRANSPORT METHOD

In this section we describe in details our computational
technique. The underlying assumption used throughout this
work is that all the quantities associated with the electronic
structure �Hamiltonian, density matrix, Green’s functions,
etc.� can be written over a localized atomic orbital �LAO�
basis set of some kind �i�=���r�−R� i�, where R� i is the posi-
tion of the ith nucleus and �=n , l ,m is a collective index
spanning, the angular momentum �l ,m�, and the orbital n.
Note that in general the index n can run over different radial
functions corresponding to the same angular momentum, ac-
cording to the multiple-� scheme.42 In this way a generic

operator Ô is represented by a finite N�N matrix �N is the
total number of degrees of freedom in the system� whose

matrix elements are simply Oi�,j�. Note also that the func-
tions �i� are generally nonorthogonal and the overlap matrix

S is defined as Si�,j�=���
* �r�−R� i����r�−R� j�d3r�.

A. Problem setup

SMEAGOL has been designed to describe two-terminal
conductance experiments, where two current-voltage elec-
trodes of macroscopic-sized sandwich a nanometer-sized de-
vice �a molecule, an atomic point contact, a tunneling barrier,
etc.�. Let us present the problem from three different per-
spectives: the thermodynamics, the Hamiltonian, and the
electrostatics �see Fig. 1�.

From a thermodynamic point of view the system is mod-
eled two bulk leads and a central region. The latter includes
the actual device and, for reasons that will be clear later, part
of the leads. Therefore, we call such a central region an
“extended molecule” �EM�. The two current-voltage leads
are kept at two different chemical potentials—respectively,
�L and �R—and are able to exchange electrons with the EM.
Note that when the applied bias is zero ��L=�R�, this system
of interacting electrons is in thermodynamic equilibrium and
may be regarded as a grand canonical ensemble. When the
bias is applied, however, �L��R and the current will flow.
Then the prescription for establishing the steady state is that
of adiabatically switching on the coupling between the leads
and EM.15,43,44

At the Hamiltonian level the system under investigation is
described by an infinite Hermitian matrix H. This however
has a rather regular structure. First notice that the two semi-
infinite current-voltage probes are defect-free crystalline
metals. These have a regular periodic structure and a unit cell
along which the direction of the transport can be defined. At
this point it is important to notice that because of the LAO
basis set, this matrix will be rather sparse. It is convenient to

FIG. 1. Schematic two-terminal device. �a� Thermodynamical
aspect: two leads are kept, respectively, at the chemical potentials
�L and �R and are able to exchange electrons with the central
region �extended molecule EM�. �b� Hamiltonian description: two
block-diagonal infinite matrices describe the semi-infinite current-
voltage probes, and a finite matrix HM describes the extended mol-
ecule. H0 is a finite Hamiltonian matrix describing one principal
layer, while H1 describes the interaction between two adjacent prin-
cipal layers. �c� Electrostatics: the two current-voltage leads have a
constant average potential �L/R=EF±V /2, and the potential drop
occurs within the extended molecule.
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introduce the concept of principal layer �PL�. A principal
layer is the smallest cell that repeats periodically in the di-
rection of the transport constructed in such a way to interact
only with the nearest-neighbor PL’s. This means that all the
matrix elements between atoms belonging to two nonadja-
cent PL’s vanish. For example, take a linear chain of hydro-
gen atoms described by a nearest-neighbor tight-binding
model then one atom forms the unit cell. However, if
nearest- and next-nearest-neighbor elements are included
then the PL will contain two atoms, etc. �for examples see
Appendix A�.

We then define H0 as the N�N matrix describing all in-
teractions within a PL, where N is the total number of de-
grees of freedom �basis functions� in the PL �note that we use
calligraphic symbols H for infinitely dimensional matrices
and capitalized letters H for finite matrices�. Similarly H1 is
the N�N matrix describing the interaction between two
PL’s. Finally HM is the M �M matrix describing the ex-
tended molecule and HLM �HRM� is the N�M matrix con-
taining the interaction between the last PL of the left-hand
side �right-hand side� lead and the extended molecule. The
final form of H is

H

=�
. . . . . . . . . .

. 0 H−1 H0 H1 0 . . . . .

. . 0 H−1 H0 HLM 0 . . . .

. . . 0 HML HM HMR 0 . . .

. . . . 0 HRM H0 H1 0 . .

. . . . . 0 H−1 H0 H1 0 .

. . . . . . . . . . .

� .

�1�

For a system which preserves time-reversal symmetry H−1
=H1

†, HML=HLM
† , and HMR=HRM

† . In this form H has the
same structure as the Hamiltonian of a one-dimensional sys-
tem as shown in Fig. 1�b�. However, this is not the most
general situation and does not apply if a magnetic field is
present, for example.

Note that the overlap matrix S has exactly the same struc-
ture of H. Therefore we adopt the notation S0, S1, SLM, SRM,
and SM for the various blocks of S, in complete analogy with
their Hamiltonian counterparts. Here the principal layer, de-
fined by H, is used for both the S and the H matrices, even
though the range of S can be considerably shorter than that
of H.

Let us now discuss the electrostatics of the problem �Fig.
1�c��. The main consideration here is that the current-voltage
probes are made from good metals and therefore preserve
local charge neutrality. For this reason the effect of an exter-
nal bias voltage on the leads will produce a rigid shift of the
whole spectrum—i.e., of all the on-site energies. In contrast
a nontrivial potential profile will develop over the extended
molecule, which needs to be calculated self-consistently. Im-
portantly the resulting self-consistent electrostatic potential
must match that of the leads at the boundaries of the EM. If
this does not happen, the potential profile will develop a

discontinuity with the generation of spurious scattering.
Therefore, in order to achieve a good match of the electro-
static potential, several layers of the leads are usually in-
cluded in the extended molecule. Their number ultimately
depends upon the screening length of the leads, but in most
situations a few �between two and four� atomic planes are
sufficient.

Even in the case of extremely short screening length, it is,
however, good practice to include a few planes of the leads
in the extended molecule because the electrodes generally
have reconstructed surfaces, which might undergo additional
geometrical reconstructions when bonding to the nanoscale
device �e.g., molecules attached to metallic surfaces through
corrosive chemical groups�.

We conclude this section with some comments about the
application of periodic boundary conditions in the transverse
direction perpendicular to that of the transport. The setup of
a typical experiment is that of two very large current-voltage
probes sandwiching a tiny region which is responsible for
most of the resistance. The ideal description would be that of
two infinite leads �with infinite cross sections� and a finite
scattering region. Unfortunately this problem is intractable
since both H0 and H1 become infinite dimensional. Therefore
one has to consider some approximations. Several schemes
are possible and in SMEAGOL we consider either finite system
or infinite periodic surfaces.

The first option consists in using leads with a finite cross
section. In this case, no periodic boundary conditions are
required and the whole system is quasi one dimensional.
However, special care must be taken when choosing the
cross section of the leads in order to avoid quantum confine-
ment effects. It is also worth noting that leads with very
small cross section make the use of the Landauer formula for
transport46 questionable. As a rule of thumb the linear dimen-
sion of the cross section should be several times the Fermi
wavelength of the material forming the leads and there
should be several open scattering channels.

The second option is to use periodic boundary conditions.
In this case the system is repeated periodically in the trans-
verse direction, meaning that the extended molecule is also
repeated periodically. Clearly quantum confinement effects
are eliminated, but one should be particularly careful in order
to eliminate the spurious interaction between the mirror im-
ages of the extended molecule. Therefore large unit cells
must be employed even when periodic boundary conditions
are used. However, from a formal point of view the use of
periodic boundary conditions does not change the problem
setup. All the matrices �H0, H1, etc.� now depend on the
transverse k vector used, and the infinite problem transforms
into a collection of k-dependent quasi-one-dimensional prob-
lems. This dependence is implicitly assumed whenever nec-
essary throughout the rest of the paper.

B. Green’s functions for an open system

We are dealing with an infinite-dimensional Hermitian
problem, which is intractable, because the wave functions
deep inside the leads have a plane-wave form. These can be
calculated by computing the band structure of an infinite
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chain of PL’s. The main computational effort is therefore
focused upon the problem of describing the scattering of
plane waves from one lead to the other across the EM. The
problem is solved by computing the retarded Green’s func-
tion GR for the whole system by solving the Green’s function
equation

��+S − H�GR�E� = I , �2�

where I is an infinite-dimensional identity matrix, �+

=lim�→0+E+ i�, and E is the energy. The same equation ex-
plicitly using the block-diagonal structure of both the Hamil-
tonian and the overlap matrix �we drop the symbol “R” in-
dicating the retarded quantities� is of the form

� �+SL − HL �+SLM − HLM 0

�+SML − HML �+SM − HM �+SMR − HMR

0 �+SRM − HRM �+SR − HR
�

�� GL GLM GLR

GML GM GMR

GRL GRM GR
� = �I 0 0

0 IM 0

0 0 I� , �3�

where we have partitioned the Green’s functions G into the
infinite blocks describing the left- and right-hand-side leads
GL and GR, those describing the interaction between the leads
and extended molecule GLM, GRM, the direct scattering be-
tween the leads GLR, and the finite block describing the ex-
tended molecule GM. We have also introduced the matrices
HL, HR, HLM, and HRM and their corresponding overlap
matrix blocks, indicating, respectively, the left- and right-
hand-side lead Hamiltonians and the coupling matrix be-
tween the leads and the extended molecule. HM is an M
�M matrix and IM is the M �M unit matrix. The infinite
matrices HL and HR describe the leads and have the block-
diagonal form

HL =�
� � � � ]

0 H−1 H0 H1 0

. . . 0 H−1 H0 H1

. . . . . . 0 H−1 H0

� , �4�

with similar expressions for HR and the overlap S matrix
counterparts. In contrast the coupling matrices between the
leads and extended molecule are infinite-dimensional matri-
ces whose elements are all zero except for a rectangular
block coupling the last PL of the leads and extended mol-
ecule. For example, we have

HLM = � ]

0

HLM
� . �5�

The crucial step in solving Eq. �3� is to write down the
corresponding equation for the Green’s function involving
the EM and surface PL’s of the left and right leads and then
evaluate the retarded Green’s function for the extended mol-
ecule GM

R . This has the form

GM
R �E� = ��+SM − HM − 	L

R�E� − 	R
R�E��−1, �6�

where we have introduced the retarded self-energies for the
left- and right-hand-side leads:

	L
R�E� = ��+SML − HML�GL

0R�E���+SLM − HLM� �7�

and

	R
R�E� = ��+SMR − HMR�GR

0R�E���+SRM − HRM� . �8�

Here GL
0R and GR

0R are the retarded surface Green’s func-
tion of the leads—i.e., the lead retarded Green’s functions
evaluated at the PL neighboring the extended molecule. For-
mally GL

0R �GR
0R� corresponds to the right lower �left higher�

block of the retarded Green’s function for the whole left-
hand-side �right-hand side� lead. These are simply

GL
0R�E� = ��+SL − HL�−1 �9�

and

GR
0R�E� = ��+SR − HR�−1. �10�

Note that GL
0R �GR

0R� is not the same as GL
R �GR

R� defined in Eq.
�3�. In fact the former are the Green’s functions for the semi-
infinite leads in isolation, while the latter are the same quan-
tities for the leads attached to the scattering region. Impor-
tantly one does not need to solve Eqs. �9� and �10� for
calculating the lead surface Green’s functions and a closed
form avoiding the inversion of infinite matrices can be
provided.40 This will be discussed in what follows and in
Appendix A.

Let us conclude this section with a few comments on the
results obtained. The retarded Green’s function GM

R contains
all the information about the electronic structure of the ex-
tended molecule attached to the leads. In its closed form
given by Eq. �6� it is simply the retarded Green’s function
associated with the effective Hamiltonian matrix Heff:

Heff = HM + 	L
R�E� + 	R

R�E� . �11�

Note that Heff is not Hermitian since the self-energies are not
Hermitian matrices. This means the the number of particles
in the extended molecule is not conserved, as expected by
the presence of the leads. Moreover, since GM

R contains all
the information about the electronic structure of the extended
molecule in equilibrium with the leads, it can be directly
used for extracting the zero-bias conductance G of the sys-
tem. In fact one can simply apply the Fisher-Lee13,47 relation
and obtain

G =
2e2

h
Tr�
LGM

R†
RGM
R � , �12�

where


��E� = i�	�
R�E� − 	�

R�E�†� . �13�

In Eq. �12� all the quantities are evaluated at the Fermi en-
ergy EF. Clearly Tr�
LGM

R†
RGM
R ��E� is simply the energy-

dependent total transmission coefficient T�E� of standard
scattering theory.46

Finally note that what we have elaborated so far is an
alternative way of solving a scattering problem. In standard
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scattering theory one first computes the asymptotic current
carrying states deep into the leads �scattering channels� and
then evaluates the quantum mechanical probabilities for
these channels to be reflected and transmitted through the
extended molecule.46 In this case the details of the scattering
region are often reduced to a matrix describing the effective
coupling between the two surface PL’s of the leads.40 In con-
trast the use of Eq. �12� describes an alternative though
equivalent approach, in which the leads are projected out to
yield a reduced matrix describing an effective EM. The cur-
rent through surface PL’s perpendicular to the transport di-
rection are the same,48 the two approaches are equivalent,
and there is no clear advantage in using either one or the
other. However, when the Hamiltonian matrix of the scatter-
ing region HM is not known a priori, then the NEGF method
offers a simple way of setting up a self-consistent procedure.

C. Steady-state and self-consistent procedure

Consider now the case in which the matrix elements of
the Hamiltonian of the system are not known explicitly, but
only their functional dependence upon the charge density �,
H=H���, is known. This is the most common case in stan-
dard mean-field electronic structure theory, such as DFT. If
no external bias is applied to the device �linear response
limit�, the Hamiltonian of the system can be simply obtained
from a standard equilibrium DFT calculation and the proce-
dure described in the previous section can be applied without
any modification. However, when an external bias V is ap-
plied, the charge distribution of the extended molecule will
differ from that at equilibrium since both the net charge and
the electrical polarization are affected by the bias. This will
determine a new electrostatic potential profile with different
scattering properties.

These modifications will affect only the extended mol-
ecule, since our leads are required to preserve local charge
neutrality. This means that the charge density and therefore
the Hamiltonian of the leads are not modified by the external
bias applied. As discussed at the beginning the only effect of
the external bias over the current-voltage electrodes is that of
a rigid shift of the on-site energies. The Hamiltonian then
takes the form

H

= � HL + SLeV/2 HLM + SLMeV/2 0

HML + SMLeV/2 HM HMR − SMReV/2

0 HRM − SRMeV/2 HR − SReV/2
� .

�14�

Note that the coupling matrices between the leads and ex-
tended molecule are also not modified by the external bias,
since by construction the charge density in the surface planes
of the extended molecule matches exactly that of the leads.

The Hamiltonian of the extended molecule,

HM = HM��� , �15�

depends on the density matrix, which is calculated using the
lesser Green’s function GM


 �Refs. 13–16, 43, and 44�,

� =
1

2�i
� dEGM


�E� , �16�

so a procedure must be devised to compute this quantity.
In equilibrium, G
�E�=−2i Im�GR�E��f�E−��, so it is

only necessary to consider the retarded Green’s function,
given by Eq. �6�. Alternatively, GR may be obtained from the
eigenvectors of H.

Out of equilibrium, however, the presence of the leads
establishes a nonequilibrium population in the extended mol-
ecule and G
 is no longer equal to −2i Im�GR�f�E−��. The
nonequilibrium Green’s function formalism13–16,43,44 pro-
vides the correct expression �see Appendix B�

GM

�E� = iGM

R �E��
Lf�E − �L� + 
Rf�E − �R��GM
R†�E� ,

�17�

where �L/R=�±eV /2, f�x� is the Fermi function for a given
temperature T,


L/R = 
L/R�E � eV/2� , �18�

and GM
R �E� is given again by Eq. �6� where now we replace

	L/R�E� with 	L/R=	L/R�E�eV /2�.
Finally the self-consistent procedure is as follows. First a

trial charge density �0 is used to compute HM from Eq. �15�.
Then 
L, 
R, and GM

R are calculated from Eqs. �18� and �6�.
These quantities are used to compute the GM


 of Eq. �17�,
which is fed back into Eq. �16� to find a new density �1. This
process is iterated until a self-consistent solution is achieved,
which is when 	� j −� j+1	�1. At this point the problem is
identical to that solved in the previous section �since the
whole H is now determined� and the current I can be calcu-
lated using45

I =
e

h
� dETr�
LGM

R†
RGM
R ��f�E − �L� − f�E − �R�� .

�19�

Note that now the transmission coefficient depends on both
the energy E and bias V.

Let us conclude this section with a note on how to per-
form the integrals of Eqs. �16� and �19�. The one for the
current is trivial since the two Fermi functions effectively cut
the integration to give a narrow energy window between the
chemical potentials of the leads. In addition the transmission
coefficient, with the exception of some tunneling situations,
is usually a smooth function of the energy.

In contrast the integration leading to the density matrix
�16� is more difficult, since the integral is unbound and the
Green’s function has poles over the real energy axis. This
however can be drastically simplified by adding and sub-
tracting the term GM

R 
RGM
R†f�E−�L� and by rewriting the

integral �16� as the sum of two contributions �=�eq+�V:

�eq = −
1

�
� dE Im�GM

R �f�E − �L� �20�

and

�V =
1

2�
� dEGM

R 
RGM
R†�f�E − �R� − f�E − �L�� . �21�
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�eq can be interpreted as the density matrix at
equilibrium—i.e., the one obtained when both the reservoirs
have the same chemical potential �L—while �V contains all
the corrections due to the nonequilibrium conditions. Com-
putationally �V is bound by the two Fermi functions of the
leads, as for the current I, and therefore one needs to perform
the integration only in the energy range between the two
chemical potentials. In contrast �eq is unbound, but the inte-
gral can be performed in the complex plane using a standard
contour integral technique,49 since GM

R is both analytical and
smooth.

D. Surface Green’s functions

Let us now return to the question of how to calculate the
self-energies for the leads. From Eqs. �7� and �8� it is clear
that the problem is reduced to that of computing the retarded
surface Green functions for the left-hand-side �GL

0R� and
right-hand-side �GR

0R� leads, respectively. This does not re-
quire any self-consistent procedure since the Hamiltonian is
known and it is equal to that of the bulk leads plus a rigid
shift of the on-site energies. However, the calculation should
be repeated several times since the 	’s depend on both the
energy and k vector. Therefore it is crucial to have a stable
algorithm.

There are a number of techniques in the literature to cal-
culate the surface Green’s functions of a semi-infinite sys-
tem. These range from recursive methods13,50 to semianalyti-
cal constructions.40 In SMEAGOL we have generalized the
scheme introduced by Sanvito et al.40 to nonorthogonal basis
sets. This method gives us a prescription for calculating the
retarded surface Green’s function exactly. The main idea is to
construct the Green’s function for an infinite system as a
summation of Bloch states with both real and imaginary
wave vectors and then to apply the appropriate boundary
conditions to obtain the Green’s function for a semi-infinite
lead.

As explained above, the Hamiltonian and the overlap ma-
trices are arranged in a tridiagonal block form having, re-
spectively, H0 and S0 on the diagonal and H1 and S1 as the
first off-diagonal blocks �see Fig. 2�. Since we are dealing
with an infinite periodic quasi-one-dimensional system, the
Schrödinger equation can be solved for Bloch states

�z = nk
1/2eikz�k �22�

and reads

�K0 + K1eik + K−1e−ik��k = 0, �23�

where z=a0j with j integer and a0 the separation between
principal layers, k is the wave vector along the direction of
transport �in units of � /a0�, �k is an N-dimensional column
vector, and nk is a normalization factor. Here we introduce
the N�N matrices

K0 = H0 − ES0, �24�

K1 = H1 − ES1, �25�

K−1 = H−1 − ES−1. �26�

Since the Green’s functions are constructed at a given
energy, our task is to compute k�E� �both real and complex�
instead of E�k� as conventionally done in band theory. A
numerically efficient method to solve the “inverse” secular
equation k=k�E� is to map it onto an equivalent eigenvalue
problem. It is simple to demonstrate40 that the eigenvalues of
the 2N�2N matrix


− K1
−1K0 − K1

−1K−1

IN 0
� �27�

are eik and that the upper N component of the eigenvectors
are the vectors �k. Clearly for the solution of this eigenvalue
problem one needs to invert K1. However, since K1 is deter-
mined by the details of the physical system, the choice of
basis set and of the principal layer may be singular or se-
verely ill conditioned. This problem often originates from the
fact that a few states within a PL do not couple to states in
the nearest-neighboring PL’s, but it can also be due to the
symmetry of the problem. For example, in the case of ab
initio—derived matrices this becomes unavoidable when one
considers transition metals, where the strongly localized d
shells coexist with rather delocalized s electrons. A possible
solution to this problem is to consider an equivalent gener-
alized eigenvalue problem, which does not require matrix
inversion. However, this solution is not satisfactory for two
reasons. First, the matrices still remain ill conditioned and
the general algorithm is rather unstable. Second, for extreme
cases we have discovered that the generalized eigenvalue
solver cannot return meaningful eigenvalues �divisions by
zero are encountered�. We therefore decide to use an alterna-
tive approach constructing a regularization procedure for
eliminating the singularities of K1. This must be performed
before starting the actual calculation of the Green’s func-
tions. We will return on this aspect in Appendix A. For the
moment we assume that K1 has been regularized and it is
neither singular nor ill conditioned.

When using orthogonal basis sets the knowledge of k and
��k
 is sufficient to construct the retarded Green’s function
for the doubly infinite system, which has the form40

FIG. 2. Infinite periodic system used as current-voltage probe
and schematic diagram of the Hamiltonian. H0 and S0 are the ma-
trices describing the Hamiltonian and the overlap within a PL,
while H1 and S1 are the same quantities calculated between two
adjacent PL’s. The arrow indicates the direction of transport.
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Gzz� = ��
l

N

�kl
eikl�z−z���̃kl

† V−1, z � z�,

�
l

N

�k̄l
eik̄l�z−z���̃

k̄l

†
V−1, z � z�,� �28�

where the summation runs over both real and imaginary kl.

In Eq. �28�, kl �k̄l� are chosen to be the right-moving or
right-decaying �left-moving or left-decaying� Bloch states—
i.e., those with either positive group velocity or having k
vector with positive imaginary part �negative group velocity
or negative imaginary part�. ��kl


 are the corresponding vec-

tors, and V is defined in Ref. 40. Finally ��̃kl

 is just the dual

of ��kl

 obtained from

�̃kl

† �km
= �lm, �29�

�̃
k̄l

†
�k̄m

= �lm. �30�

In the case of a nonorthogonal basis set the same expres-
sion is still valid if V is now defined as follows:

V = �
l

N

�H1
† − ES1

†���kl
e−ikl�kl

† − �k̄l
e−ik̄l�

k̄l

† � . �31�

Finally the surface Green’s functions for a semi-infinite
system can be obtained from those of the doubly infinite one
by an appropriate choice of boundary conditions. For in-
stance, if we subtract the term

�z�z� − z0� = �
l,h

N

�k̄h
eik̄h�z−z0��

k̄h

†
�kl

eikl�z0−z���kl

† V−1 �32�

from Gzz� of Eq. �28�, we obtain a new retarded Green’s
function vanishing at z=z0. Note that �z�z�−z0� is a linear
combination of eigenvectors and therefore does not alter the
causality of G.

In this way we obtain the final expressions for the re-
tarded surface Green’s functions of both the left- and right-
hand-side leads:

GL
0R = �IN − �

l,h
�k̄h

e−ik̄h�̃
k̄h

†
�kl

eikl�̃kl

† �V−1, �33�

GR
0R = �IN − �

l,h
�kh

eikh�̃kh

† �k̄l
e−ik̄l�̃

k̄l

† �V−1. �34�

These need to be computed at the beginning of the calcula-
tion only.

This semianalytical construction of the surface Green’s
functions has numerous advantages over standard recursive
methods. In fact recursive algorithms require a number of
inversions of the H1 matrix, the Green’s function itself, or
some linear combination of these. Inversion typically scales
as N3, with N the dimension of the matrix, and it becomes a
major problem when the matrices in question are rather large
and sparse. More drastically the algorithm fails in case of
singular matrices. In contrast, in our scheme all order-N3

operations—for instance, the evaluation of the inverse dis-

persion �27�—are performed only once. Most importantly we
eliminate all possible singularities at the very beginning of
the calculations �see Appendix A�. This procedure gives a
remarkable numerical stability to our algorithm and drasti-
cally reduces the degrees of freedom needed for constructing
the self-energies of the leads.

E. DFT implementation and electrostatics

The formalism presented in Secs. II A–II D is rather gen-
eral and is not specific of a particular functional dependence
of the Hamiltonian upon the charge density. Therefore one
can use on the same footing Hamiltonian theories ranging
from parametrized self-consistent tight-binding methods51 to
density functional theory.25,26 SMEAGOL uses DFT as its main
electronic structure method.

At this point it is important to observe that SMEAGOL, and
indeed any other NEGF DFT-based scheme, simply uses the
Kohn-Sham Hamiltonian26 as a single-particle Hamiltonian.
This means that the nonequilibrium charge density obtained
through the NEGF method �Eqs. �20� and �21�� is not by any
mean associated with any variational principle and certainly
does not minimize the density functional or make it station-
ary. The only exception is for zero bias, where the method
presented here is just a clever alternative for solving an equi-
librium problem for an infinite nonperiodic system. Although
it is common practice, it is therefore misleading and incor-
rect to refer to our method as DFT-based NEGF, since the
Hohenberg-Kohn theorem cannot be applied.25 Some addi-
tional discussion over this issue can be found in Ref. 52.

Although SMEAGOL is constructed in a simple and modu-
lar way and can be readily interfaced with any DFT package
based on a LAO basis set, for the present implementation we
have used the existing code SIESTA.53 SIESTA is a mature
numerical implementation of DFT, which has been specifi-
cally designed for tackling problems involving a large num-
ber of atoms. It uses norm-conserving pseudopotentials in
the separate Kleinman-Bylander form54 and most impor-
tantly a very efficient LAO basis set.42,55,56

One important aspect that deserves mention is the way in
which we calculate the Hartree �electrostatic� potential for
the extended molecule under bias. Clearly the easier and
more transparent way would be that of solving the Poisson’s
equation in real space with appropriate boundary conditions.
However, this usually is numerically less efficient than solv-
ing it in k space using the fast-Fourier-transform algorithm.
SIESTA uses this second strategy and so does SMEAGOL. In
SMEAGOL the electrostatic potential is then calculated for the
infinite system obtained by repeating periodically the ex-
tended molecule along the transport direction �see Fig. 3�.
However, before solving Poisson’s equation for such a sys-
tem we add to the Hartree potential a sawlike term, whose
drop is identical to the bias applied. For convergence reasons
we often add at both edges of the scattering region two
buffer layers, in which the external potential is only a con-
stant and the density matrix is that of the leads and is not
evaluated self-consistently.

In summary a typical SMEAGOL calculation proceeds as
follows. First, one computes the leads self-energies over a
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range of energies E as large as the bandwidth of the materials
forming the leads. These are then stored either in memory or
on disk depending on the size of the leads. Then, the proper
SMEAGOL calculation is performed following the prescription
described in the previous sections.

III. TEST CASES

We now present several test cases demonstrating the ca-
pabilities of SMEAGOL. They address key aspects of the code
such as the electrostatics, the calculation of the transmission
coefficients, the calculation of the I-V characteristic, the
spin-polarization, and the spin noncollinearity.

A. Electrostatics: Parallel-plate capacitor

As first simple test we present the case of a parallel-plate
capacitor, constructed from two infinite fcc gold surfaces

separated by a vacuum region 12.3 Å long. Clearly we do
not expect transport across this device �with the exception of
a tiny tunneling current�, but it is a good benchmark of the
SMEAGOL ability to describe the electrostatics of a device.

The two gold surfaces are oriented along the �100� direc-
tion, and the unit cell has only one atom in the cross section.
The extended molecule comprises seven atomic planes in the
direction of the transport, which is enough for achieving a
good convergence of the Hartree potential �the Thomas-
Fermi screening length in gold is �0.6 Å �Ref. 57��. For the
calculation we use 100 k points in the full Brillouin zone in
the transverse direction, a single-� basis set for the s, p, and
d orbitals, and standard local density approximation �LDA�
of the exchange and correlation potentials. The cutoff radius
for the basis functions is 6 bohrs, which is large enough for
describing the charge density spill-out into the vacuum. A
similar calculation where additional basis functions are intro-
duced into the vacuum region gives similar results.

In Fig. 4 we present the planar average of the Hartree
�electrostatic� potential VH, the difference between the planar
average of Hartree potential at finite bias and that at zero bias
�V, and the difference �� between the planar average of the
charge density along the direction of the transport for a given
bias and that at zero bias. The quantities shown in the picture
are those expected from the classical physics of a parallel-
plate capacitor. In the leads the electrostatic potential shows
oscillations with a period corresponding to that of the sepa-
ration between the gold planes, but with a constant average.
In contrast in the vacuum region the potential is much higher,
since there are no contributions from the nuclei, but it is
uniform. If we eliminate the oscillations, by subtracting the
zero-bias potential from that obtained at finite bias �Fig.
4�b��, we obtain a constant potential profile in the leads and
a linear drop in the vacuum region. Finally the macroscopic
average of the charge density shows charge accumulation on
the surfaces of the capacitor and local charge neutrality in the
lead region as expected from a capacitor.

B. Gold nanowires

Metallic quantum point contacts �PC’s� present conduc-
tance quantization at room temperature,58 a property that has

FIG. 4. �a� Planar average of the Hartree potential VH for an
infinite parallel-plate capacitor. �b� Difference between the planar
average of the Hartree potential at a given bias and that at zero bias
�V. �c� Difference �� between of the planar average of the charge
density along the direction of the transport for a given bias and that
at zero bias. The dots indicate the position of gold planes.

FIG. 5. �Color online� The transmission coefficient as a function
of energy �upper panel� for a gold atomic point contact sandwiched
between two gold tips oriented along the �100� direction. In the
lower panel the band structure for a monoatomic gold chain with
lattice constant equal to the Au-Au separation in bulk gold. The
inset shows a ball-and-stick representation of the atomic positions
of the PC �the extended molecule�.

FIG. 3. Schematic representation of the electrostatic problem.
The real system �a� of an extended molecule sandwiched between
two leads is mapped onto a fictitious periodic system �b�, obtained
by repeating the extended molecule in the direction of the transport.
The crucial point is that the potential profile in the unit cell of the
periodic system is identical to that of the actual structure.
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been predicted theoretically for many years.16 Recently, Ro-
drigues et al. have shown that in a point contact the crystal-
lographic orientation of the atomic tips forming the junction
plays an important role in determining transport properties.59

Therefore, a realistic theoretical description of the electronic
transport in PC’s must take into consideration the atomistic
aspects of the problem.

As an example we have performed calculations for a
�100�-oriented gold quantum point contact �see inset of Fig.
5�. A single gold atom is trapped at its equilibrium position
between two �100� fcc pyramids. This is the expected con-
figuration for such a specific crystal orientation and the con-
figuration likely to form in breaking junction experiments for
small elongation of the junction. This has been confirmed by
atomic resolution transmission electron microscope �TEM�
images.60,61 In this case we have used LDA and a single-�
basis set for s, p, and d orbitals. The unit cell of the extended
molecule now contains 141 atoms �seven planes of the leads
are included� and we consider periodic boundary conditions
with 16 k points in the two-dimensional �2D� Brillouin zone.

In Fig. 5 we present the zero-bias transmission coefficient
as a function of energy. Recalling that the linear response
conductance is simply G=2e2 /hT�EF� �in this case we have
complete spin degeneracy� our calculation shows one quan-
tum conductance for this point contact. Interestingly the
transmission coefficient is a rather smooth function T�1 for
a rather broad energy range around EF. This means that the
G=2e2 /h result is stable against the fluctuations of the posi-
tion of the Fermi level, which may be encountered experi-
mentally.

The large plateau at T�1 indicates the presence of a
single conductance channel for energies around and above
EF. This is expected from the band structure of a straight
monoatomic gold chain with lattice parameter equal to the
Au-Au separation in bulk gold �see Fig. 5�b��, which pre-
sents only one s band for such energy range. Therefore we
conclude that the transport at the Fermi level is dominated by
a single low-scattering s channel. Notably for energies 1 eV
below EF the transmission coefficient shows values exceed-
ing 1, which are due to contributions from d orbitals. In gold
monoatomic chains these are substantially closer to EF than
in bulk gold and participate to the transport. These results are
in good agreement with previously reported calculations62,63

and experimental data.58,60,64 Additional examples of
SMEAGOL calculations for PC’s carried out by the authors can
be found elsewhere in the literature.65,66

C. Molecular spin valves

The study of the I-V characteristics of magnetic systems
at the nanoscale is one of the main goals of SMEAGOL. The
most typical among spin devices is the magnetic spin valve,
which is obtained by sandwiching a nonmagnetic spacer be-
tween two magnetic contacts. The direction of the magneti-
zation in the two contacts can be arbitrarily changed by ap-
plying a magnetic field. The device then switches from a
low-resistance state, when the magnetization vectors in the
leads are parallel to each other, to a high-resistance state,
when the alignment of the magnetizations is antiparallel.

This is the giant magnetoresistance �GMR� effect,67,68 which
is at the foundation of modern hard-disk reading technology.

Traditional spin valves use either metals or inorganic in-
sulators as spacers. However, a recent series of experiments
have shown that organic molecules can serve the same pur-
pose and a rather large GMR can be found.69–73 These ex-
periments could lead to integrating the functionalities of
molecules with spin systems and therefore have the potential
to merge together the fields of spin and molecular electron-
ics.

The calculation of the transport properties of molecular
spin valves is a tough theoretical problem. It involves the
computation of accurate electronic structures for magnetic
surfaces, the charging properties of molecules and knowl-
edge of the actual atomic positions. In a recent paper41 we
have demonstrated that molecules can efficiently be em-
ployed in spin valves. Moreover, we have shown that
�-conjugated conducting molecules produce larger GMR
than their insulating counterparts. Most of the effect is due to
the orbital selectivity of the molecule-metal bonding, which
in transition metals translates to a spin selectivity. Here we
further expand this concept and we demonstrate that the
GMR can be tuned by molecular end-group engineering.

The system under investigation is a 1,4-phenyl molecule
attached to two fcc Ni surfaces oriented along the �001� di-
rection. The molecules are attached to the Ni hollow site
through a thiol-like group where we use S, Se, and Te as
anchoring atoms. We consider collinear spin only and inves-
tigate the I-V characteristic assuming the magnetization vec-
tors in the current-voltage contacts to be either parallel �P� or
antiparallel �AP� to each other. The size of the GMR effect is
expressed by the GMR ratio RMR, which is defined as RMR
= �IP− IAP� / IAP, with IP �IAP� the current in the parallel �anti-
parallel� state. At zero bias, when all the currents vanish, we
replace them with the conductances.

We construct the unit cell of the extended molecule to
include four Ni atomic planes on each side, for a total of
forty Ni atoms. The basis set is critical and a single � for all
the orbitals is not sufficient. Therefore we have used single �
for H, C, and S s orbitals, double � for Ni s, p, and d, and
double � polarized for C and S p orbitals. This basis gives us
a Hamiltonian with over 1000 degrees of freedom. Finally
the charge density is obtained by integrating the Green’s
function over 50 imaginary and 600 real energies.

In Figs. 6–8 we present the I-V characteristics, the zero-
bias transmission coefficient as a function of energy, and the
GMR ratio as a function of bias for the three anchoring situ-
ations �S, Se, Te�. Clearly all three cases show a large GMR,
particularly for small biases. Interestingly the maximum
GMR increases when going from S to Se to Te, and this is
correlated with a general reduction of the total transmission
and consequently of the current. Such a reduction is more
pronounced in the case of antiparallel alignment of the leads,
and this gives rise to the increase in GMR. The origin of the
drastic reduction of the transmission when changing the an-
choring groups has to be found in the different bonding
structure. Since S, Se, and Te all belong to the same row of
the periodic table, the orbital nature of the bonding to the Ni
surface is left unchanged and so are the generic features of
the transmission coefficient. However, the bond distance
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goes from 1.28 Å to 1.48 Å to1.77 Å when going from S to
Se to Te. This large increase in the bond distance is respon-
sible for the reduction in transmission.

The most relevant features of the transmission coefficient
can be understood in terms of tunneling through a single
molecular state.41 If we define t↑�E� �t↓�E�� as the majority
�minority� spin hopping integral from one of the leads to the
molecular state, then the total transmission coefficient
through the entire device in the parallel alignment will be
simply T=T↑↑+T↓↓= �t↑�2+ �t↓�2. Here the total transmission
coefficient for majority �minority� spin is T↑↑= �t↑�2 �T↓↓

= �t↓�2�. Similarly in the case of antiparallel alignment of the
leads we have T=2T↑↓=2T↓↑=2t↑t↓. In this simple descrip-
tion, which neglects both co-tunnelling and multiple scatter-

ing from the contacts, T↑↓�E� turns out to be a convolution of
the transmission coefficients for the parallel case T↑↓

��T↑↑T↓↓. This type of behavior can be appreciated in Figs.
6–8.

It is important to note that the large GMR ratio is ulti-
mately due to the low transmission around EF in the antipar-
allel case, which originates from the small transmission of
the minority spins in the parallel case through the relation
T↑↓�EF���T↑↑�EF�T↓↓�EF�. This is surprising since the den-
sity of states for minority spins at the Fermi level is rather
large and one may expect substantial transmission. More-
over, s-like electrons, which are weakly affected by the spin
orientation, generally contribute heavily to the current re-
gardless of the magnetic state of the device. Therefore, what
does block the minority spin electrons?

A detailed analysis of the local density of states of the
molecule attached to the leads41 reveals that the bonding of
the molecule to the Ni surface is through Ni d and S p
orbitals �the same is valid for Se and Te�. The transport is
therefore through hybrid Ni d–S p states, which in turn are
spin-split due to the ferromagnetism of Ni. The crucial point
here is that for the minority band these states end up above
the Fermi level and therefore do not contribute to the low
bias transport. This is an important observation, since it dem-
onstrates that orbital selectivity in magnetic systems can pro-
duce a spin selectivity and, therefore, magnetoresistance type
of effects.

D. Nickel point contacts

The transport properties of magnetic transition-metal
point contacts have been the subject of several recent inves-
tigations. Technologically these systems are attractive since
they can be used as building blocks for read heads in ultra
high-density magnetic data storage devices. From a more
fundamental point of view they offer the chance to investi-
gate magnetotransport at the atomic level. Magnetic point

FIG. 6. Transport properties for a 1,4-phenyl molecule attached
to Ni �100� surfaces through a S group. The top panel shows the I
-V characteristics for both the parallel and antiparallel alignment of
the leads and the inset the corresponding GMR ratio. The lower
panel is the transmission coefficient at zero bias as a function of
energy. Because of spin symmetry, in the antiparallel case we plot
only the majority spin.

FIG. 7. Transport properties for a 1,4-phenyl molecule attached
to Ni �100� surfaces through a Se group. The top panel shows the
I-V characteristics for both the parallel and antiparallel alignments
of the leads and the inset the corresponding GMR ratio. The lower
panel is the transmission coefficient at zero bias as a function of
energy. Because of spin symmetry, in the antiparallel case we plot
only the majority spin.

FIG. 8. Transport properties for a 1,4-phenyl molecule attached
to Ni �100� surfaces through a Te group. The top panel shows the
I-V characteristics for both the parallel and antiparallel alignments
of the leads and the inset the corresponding GMR ratio. The lower
panel is the transmission coefficient at zero bias as a function of
energy. Because of spin symmetry, in the antiparallel case we plot
only the majority spin.
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contacts are effectively spin-valve-like devices, with the
spacer now replaced by a narrow constriction where a sharp
domain wall can nucleate.74 Therefore the magnetoresistance
can be associated with domain-wall scattering and the MR
ratio can be defined earlier.

A simple argument based on the assumption that all the
valence electrons can be transmitted with T�1 gives an up-
per bound for the GMR of the order of a few percent �100%
in the case of nickel�. This however may be rather optimistic
since one expects the d electrons to undergo quite some se-
vere scattering. Indeed small values of GMR for Ni point
contacts have been measured.75 Surprisingly at the same time
other groups have measured huge GMR for the same
system.6,76–78 Although mechanical effects can be behind
these large values,79 the question as to whether or not a large
GMR of electronic origin can be found in point contacts
remains.

Therefore we investigate the zero-bias conductance of a
four-atom-long monoatomic Ni chain sandwiched between
two Ni �001� surfaces �see Fig. 9�. This is an extreme situa-
tion rarely found in actual break junctions.80 However, an
abrupt domain wall �one atomic spacing long� in a mono-
atomic chain is the smallest domain wall possible and it is
expected to show the largest GMR. For this reason our cal-
culations represent an upper bound on the GMR obtainable
in Ni-only devices and they also serve as a test of the
SMEAGOL capability for dealing with noncollinear spin.

In this calculation we use a double-� basis set for s, p, and
d orbitals and consider finite leads �no periodic boundary
conditions are applied� with either four or five atoms in the
cross section. We then investigate two possible situations. In
the first one we place the domain wall symmetrically with
respect to the leads—i.e., between the second and third at-
oms of the chain. In the second �asymmetric� the domain
wall is positioned between the third and fourth atoms. Fur-
thermore, we perform spin-collinear and spin-noncollinear
calculations for both cases. Interestingly all our noncollinear
calculations always converge to a final collinear solution.
This confirms expectations based on a simple s−d model,81

suggesting that the strong exchange coupling between the
conduction electrons and those responsible for the ferromag-
netism stabilizes the collinear state if the magnetization vec-
tors of the leads are collinear.

In Fig. 10 we present the transmission coefficient as a
function of the energy for both the symmetric and asymmet-
ric cases and the parallel state. For collinear calculations the
contributions from majority and minority spins are plotted
separately, while we have only one transmission coefficient
in the noncollinear case. Clearly in all cases the noncollinear

solution agrees closely with the collinear one—i.e., Tcollinear
↑

+Tcollinear
↓ =Tnoncollinear. This is expected since the final mag-

netic arrangement of the noncollinear calculation is actually
collinear, and it is a good test for our computational scheme.

Turning our attention to the features of the transmission
coefficient it is evident that at the Fermi level T in the par-
allel state is larger than that in the antiparallel. This differ-
ence, however, is not large and the GMR ratio is about 60%
with little difference between the symmetric and asymmetric
domain walls. This is mainly due to the much higher trans-
mission of the unpolarized s electrons compared with that of
the d. Note that the conductance approaches 2e2 /h for ener-
gies approximately 0.5 eV above the Fermi level. For such
energies, in fact, no d electrons contribute to the density of
states of both the spin subbands and only s electrons are left.
These are then transmitted with T�1 as in the case of Au
chains investigated previously.

The crucial point is that the contribution of the s electrons
is also large at the Fermi level. This results in a poorly spin-
polarized current at low bias and consequently in a small
GMR, in agreement with other calculations.82,83 In conclu-
sion our finding rules against the possibility of large GMR
from electronic origin in Ni point contacts. However, the
presence of nonmagnetic contamination �for example, oxy-
gen� may change this picture radically.

E. H2 molecules joining platinum electrodes

The aim of this section is to show how strongly the trans-
mission coefficients may depend on the leads cross section,
whenever d electrons are close to EF. As an example, we
present results for the H2 molecule sandwiched between fcc
Pt�001� leads and compare leads of different cross sections
with extended leads. These are obtained by applying periodic

FIG. 9. �Color online� Schematic representation of the Ni point
contact simulated. In the symmetric case the domain wall is located
between the second and third atoms, while in the asymmetric it is
placed between the third and fourth. The direction of the current is
from 1 to 4 for positive bias.

FIG. 10. �Color online� Transmission coefficient as a function of
energy for the nickel quantum point contacts of Fig. 9. The right-
hand-side panels �a� are for collinear calculations and the left-hand-
side panels �b� are for noncollinear: �1� parallel state, �2� antiparal-
lel with symmetric domain wall, and �3� antiparallel with
asymmetric domain wall. Note that in the noncollinear case we do
not distinguish between majority and minority spins. In panel �a2�
majority and minority spins are degenerate.
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boundary conditions and a sampling over the k points along
the direction orthogonal to that of transport.

The conductance of an H2 molecule sandwiched between
platinum electrodes has been extensively studied.65,84–87

Experimentally84 it has been found that the inclusion of hy-
drogen gas into the vacuum chamber produces a dramatic
change in the conductance histograms of platinum, which
change from a structure with a broad peak at 1.5G0 to a
structure with a sharp peak at 1G0. This resonance has been
attributed to the conductance through a single molecule,
which bridges both leads lying parallel to the current flow.
This explanation has been confirmed by theoretical
calculations.65,85,87

In our calculations the H2 molecules are located either
parallel or perpendicular to the current flow. A detailed de-
scription of the geometric configuration and the results can
also be found in Ref. 65. We use a double-� polarized basis
set for platinum s, p, and d orbitals, a double � for the hy-
drogen s electrons, and the LDA functional. As a first step we
employ finite cross-section leads along the transversal direc-
tions, composed of alternated planes containing four and five
atoms each. The resulting transmission coefficients show
many peaks and gaps throughout all the energy range and
particularly sharp variations around the Fermi energy, as can
be seen in Figs. 11�a1� and 11�b1�. When thicker slabs com-
posed of alternating planes of 9 and 12 atoms are employed
the results do not improve and the large oscillations still
remain, as shown in Figs. 11�a2� and 11�b2�. It is apparent
from these figures that while T�E� shows a long plateau at
positive energies, it presents strong oscillations at the Fermi
energy and, therefore, it is uncertain to infer the conductance
of the junction from T�EF�.

This is in stark contrast with the case of gold, where the d
levels lie below EF and T�E� is smooth regardless of the size
of the leads cross section. For platinum the presence of d
states at the Fermi energy opens minibands and minigaps,
which translate into strong oscillations in T�E�EF�. These
minibands and minigaps arise from interference effects of the
d states along the transverse direction. Consequently, oscil-
lations in T�E� should disappear when bulk electrodes are
used. Indeed, this is what we find when slabs made of 3
�3 atomic planes and periodic boundary conditions are em-
ployed, as shown in Figs. 11�a3� and 11�b3�. We moreover
show how T�E� converges when the number of transverse k
points is increased from 4 to 12. Although some small varia-
tions and peaks still remain when four k points are used, the
transmission at the Fermi level is essentially converged. Note
that the parallel case has T�1 for a long range of energies
around EF, which remains essentially unperturbed for small
variations of the coordinates or the distance between the
electrodes. This explains the sharp peak observed in the ex-
perimental conductance histograms.84

In view of the above calculations we can therefore con-
clude that the use of bulk electrodes, characterized by peri-
odic boundary conditions along the perpendicular directions
and k points, is mandatory in order to avoid oscillations in
the transmission coefficients. Otherwise the presence of
strong variations and minigaps can give unphysical solutions
for systems with open d shells.

IV. CONCLUSIONS

We have presented a description of our newly developed
nonequilibrium Green’s function code SMEAGOL. In the
present version SMEAGOL uses the DFT implementation con-
tained in SIESTA as the underlying electronic structure
method. However, the code has been developed in a modular
and general form and can be easily combined with any elec-
tronic structure scheme based on localized orbital basis set.
The core of SMEAGOL is our new algorithm for calculating
the surface Green’s functions of the leads, which combines
generalized singular value decomposition with decimation.
This results in an unprecedent numerical stability for a quan-
tum transport code and in the possibility of drastically reduc-
ing the number of degrees of freedom in the leads. In this
way large current-voltage probes with complicated electronic
structure can be tackled.

We have also presented a selection of results obtained
with SMEAGOL. These range from simple tests for the elec-
trostatics to an analysis of the GMR in molecular spin valves
and demonstrate the ability of SMEAGOL to tackle very dif-
ferent problems.
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APPENDIX A: STABLE ALGORITHM FOR THE
EVALUATION OF THE SELF-ENERGIES

1. “K1 problem”

The method presented in Sec. II D to calculate the lead
Green’s functions depends crucially on the fact that the cou-
pling matrix between principal layers K1=H1−ES1 is invert-
ible and not ill defined. However, this is not necessarily the
case since singularities can be present in K1 as the result of
poor coupling between PL’s or because of symmetry reasons.
Note also that since K1=H1−ES1, the rank of K1 may also
depend on the energy E.

We now give a few examples illustrating how these sin-
gularities arise. Let us consider for the sake of simplicity an
orthogonal nearest-neighbor tight-binding model with only
one s-like basis function per atom. In this case K1=H1 is
independent from the energy. In Fig. 12 we present four pos-
sible cases for which H1 is singular.

In the picture the dots represent the atomic position, the
lines the bonds and the dashed boxes enclose a PL. All the
bonds are assumed to have the same strength; thus, all hop-
ping integrals � are identical.

In the first case �Fig. 12�a�� the PL coincides with the
primitive unit cell of the system and, therefore, it is the
smaller principal layer that can be constructed. However,
since every second atom in the cell does not couple with its
mirror in the two adjacent cells H1 has the form

H1 = 
� 0

0 0
� �A1�

and therefore is singular. This is the case of “lack of bond-
ing” between principal layers. It is the most common case
and almost always present when dealing with transition met-
als, since localized d shells coexist with delocalized s orbit-
als.

Figure 12�b� presents a different possibility. Here the PL
is a supercell constructed from two unit cells and every atom
in the PL couples with atoms located in only one of the two
adjacent PL’s. In this case,

H1 = 
0 0

� 0
� , �A2�

which is again singular. Clearly in this specific case one can
reduce the principal layer to be the primitive unit cell solving
the problem �H1 become a scalar ��. However, in a multior-
bital scheme the supercell drawn may be the smallest PL
possible and the problem will appear. Again this is a rather
typical situation when dealing with transition metals.

The case of “overbonding” is shown in Fig. 12�c�. Again
the PL coincides with the primitive unit cell, but now every
atom in the PL is coupled to all the atoms in the two adjacent
PL’s. In this case,

H1 = 
� �

� �
� , �A3�

which is not invertible.
Finally the “odd-bonding” case is presented in Fig. 12�d�.

Also in this case the PL coincides with the primitive unit
cell; however, the upper atom in the cell is coupled only to
atoms in the right nearest-neighbor principal layer. The H1
matrix is then �we label as “1” the upper atom in the cell�

H1 = 
0 �

0 �
�; �A4�

i.e., it is singular. Clearly the above categorization is basis
dependent, since one can always find a unitary rotation trans-
forming a generic H1 in a new matrix of the form of Eq.
�A4�.

2. Finding the singularities of K1

We now present the first step of a scheme for regularizing
K1, and indeed the whole Hamiltonian and overlap matrix,
by removing their singularities. In the cases of “lack of bond-
ing,” “supercell,” and “odd bonding” presented in the previ-
ous section the singularities of K1=H1 were well defined
since an entire column was zero. However, more generally,
and in particular in the case of multiple � basis set, K1 is
singular without having such a simple structure �for instance,
as in the “overbonding” case�. This is the most typical situ-
ation and a method for identifying the singularities is needed.

The ultimate goal is to perform a unitary transformation
of both H and S in such a way that the off-diagonal blocks of
the leads Hamiltonian and overlap matrix �H1 and S1� as-
sume the form

FIG. 12. Four different structures for which H1 is singular: �a�
lack of bonding, �b� supercell, �c� overbonding, and �d� odd bond-
ing. Each black dot represents an atom and each line a bond. The
dashed boxes enclose a principal layer.
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N − R R

N �0, A�
=�

0 0 ¯ A1,N−R+1 ¯ A1,N

0 0 ¯ A2,N−R+1 ¯ A2,N

0 0 ¯ A3,N−R+1 ¯ A3,N

] ] ] ] ] ]

0 0 ¯ AN,N−R+1 ¯ AN,N

�;

�A5�

i.e., they are N�N block matrices of rank R, whose first N
−R columns vanish. In this form the problem is reconducted
to the problem of “odd bonding” presented in the previous
section.

This can be achieved by performing a generalized singu-
lar value decomposition88 �GSVD�. The idea is that a pair of
N�N matrices, in this case H1 and S1, can be written in the
form

H1 = U�1�0, W�Q†, �A6�

S1 = V�2�0, W�Q†, �A7�

with U, V, and Q unitary N�N matrices and W being a R
�R nonsingular triangular matrix where R is the rank of the
2N�N matrix

�H1

S1
� �R � N� .

The matrices �1 and �2 are defined as follows:

�1 =

K L

K

L

N − K − L
�IK 0

0 C

0 0
� , �A8�

�2 =

K L

L

N − L

0 C�

0 0
� , �A9�

where L is the rank of S1, K+L=R, IK is the K�K unit
matrix, and C and C� are matrices to determine.

Clearly the two matrices H1 and S1 have the two common
generators W and Q. Then, one can perform a unitary trans-
formation of both H1 and S1 by using Q, obtaining

H1
Q = Q†H1Q = Q†U�1�0, W� =

N − R R

N �0, H̄1�
, �A10�

S1
Q = Q†S1Q = Q†V�2�0, W� =

N − R R

N �0, S̄1� .
�A11�

Here H̄1 and S̄1 are the N�R nonvanishing blocks of the
GSVD-transformed matrices H1 and S1, respectively.

In an analogous way the same transformation for H1
†, S1

†,
H0, and S0 leads to

H1
Q† = Q†H1

†Q =

N

N − R

R
� 0

H̄1
†� , �A12�

S1
Q† = Q†S1

†Q =

N

N − R

R
� 0

S̄1
†� , �A13�

H0
Q = Q†H0Q , �A14�

S0
Q = Q†S0Q , �A15�

where the transformed matrices H0
Q and S0

Q are not necessar-
ily in the form of Eq. �A5�.

We are now in the position of writing the final unitary
transformations for the total �infinite� Hamiltonian H and
overlap S matrices describing the whole system �leads plus
extended molecule�. These are given by Q†HQ and Q†SQ
with the infinite matrix Q defined as

Q =�
� . . . . . . .

. 0 Q 0 . . . . .

. . 0 Q 0 . . . .

. . . 0 IM 0 . . .

. . . . 0 Q 0 . .

. . . . . 0 Q 0 .

. . . . . . . . �

� , �A16�

where IM is the M �M unit matrix. Note that this unitary
transformation rotates all the H1 matrices �the S1 matrices in
the case of S�, but it leaves HM �SM� unchanged. Finally the
matrices coupling the extended molecule to the leads trans-
form as follows:

HLM
Q → Q†HLM,

HML
Q → HMLQ ,

HRM
Q → Q†HRM,

HMR
Q → HMRQ , �A17�

and so do the corresponding matrices of S.

3. Solution of the “K1 problem”

Now that both H and S have been written in a convenient
form we can efficiently renormalize them out. The key ob-
servation is that the two �infinite� blocks describing the leads
have now the following structure �the S matrix has an analo-
gous structure, and it is not shown here explicitly�:
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HL/R
Q =�

� ] ] ]

¯ Q†H0Q Q†H1Q 0 ¯

¯ Q†H−1Q Q†H0Q Q†H1Q ¯

¯ 0 Q†H−1Q Q†H0Q ¯

] ] ] �

�
=�

� ] ] ]

¯ Q†H0Q �0 H̄1� 0 ¯

¯ � 0

H̄1
†� 
C B

B† D
� �0 H̄1� ¯

¯ 0 � 0

H̄1
†� 
C B

B† D
� ¯

] ] ] �

� ,

�A18�

where the matrices D, B, and C are, respectively, R�R, N
� �N−R�, and �N−R�� �N−R�.

Note that the degrees of freedom �orbitals� contained in
the block C of the matrix H0

Q=Q†H0Q couple to those of
only one of the two adjacent PL’s. This situation is the gen-
eralization to a multiorbital nonorthogonal tight-binding
model of the “odd-bonding” case discussed at the beginning
of this appendix �Fig. 12�d��. These degrees of freedom are
somehow redundant, and they will be eliminated. We there-

fore proceed with performing Gaussian elimination40 �also
known as “decimation”� of all the degrees of freedom asso-
ciated with all the blocks C.

The idea is that the Schrödinger equation Q†�H
−ES�Q�=0 can be rearranged in such a way that a subset
of degrees of freedom �in this case those associated with
orbitals in a PL that couple only to one adjacent PL� do not
appear explicitly. The procedure is recursive. Let us suppose
we wish to eliminate the lth row and column of the matrix
KQ=Q†�H−ES�Q. This can be done by rearranging the re-
maining matrix elements according to

KQ�1�
ij = KQ

ij −
KQ

ilKQ
lj

KQ
ll

. �A19�

The dimension of the resulting new matrix KQ�1�
�“1” indi-

cates that one decimation has been performed� is reduced by
one with respect to the original KQ. This procedure is then
repeated, and after r decimations we obtain a matrix

KQ�r�
ij = KQ�r�

ij −
KQ�r−1�

ilKQ�r−1�
lj

KQ�r−1�
ll

. �A20�

Let us now decimate all the matrix elements contained in
all the submatrices C. We obtain a new tridiagonal matrix
KQ���

�“�” means that an infinite number of decimations
have been performed� of the form

KQ���
=�

. . . . . . . . . .

0 �† � � 0 . . . . . .

. 0 �† � T1 0 . . . . .

. . 0 T1
† D1 KLM

Q 0 . . . .

. . . 0 KML
Q KM �MR 0 . . .

. . . . 0 �RM D2 � 0 . .

. . . . . 0 �† � � 0 .

. . . . . . 0 �† � � 0

. . . . . . . . . . .

� , �A21�

where KLM
Q =HLM

Q −ESLM
Q , KML

Q =HML
Q −ESML

Q , and KM=HM

−ESM. The crucial point is that the new matrix KQ��� is still
in the desired tridiagonal form, but now the coupling matri-
ces between principal layers � are not singular. These are
now R�R matrices obtained from the decimation of the non-
coupled degrees of freedom of the matrices K1

Q �the C
blocks�. Moreover, the elimination of degrees of freedom
achieved with the decimation scheme is carried out only in
the leads. The electronic structure of these is not updated
during the self-consistent procedure for evaluating the
Green’s function, and therefore information regarding the
decimated degrees of freedom is not necessary. In contrast

the degrees of freedom of the scattering region are not af-
fected by the decimation or rotation. Therefore the matrix
KM is unaffected by the decimation.

In the decimated matrix KQ���
new terms appear �D1, D2,

T1, and �MR�. These arise from the specific structure of the
starting matrix Q†�H−ES�Q and from the fact that the com-
plete system �leads plus scattering region� is not periodic. In
fact assuming that j is the last principal layer of the left-
hand-side lead and l is the first layer of right-hand-side lead,
the decimation is carried out up to j−1 to the left and starts
from l to the right of the scattering region. This allows us to
preserve the tridiagonal form of K and at the same time to
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leave KM unchanged. A schematic picture of the decimation
strategy is illustrated in Fig. 13.

In practical terms all the blocks of the infinite matrix of
Eq. �A21� can be calculated by decimating auxiliary finite
matrices: in particular, the following.

�i� �, �, and D2 are calculated by decimating both the C
matrices of the finite 2N�2N matrix

�

C B

B† D
� �0 K̄1�

� 0

K̄1
†� 
C B

B† D
� �→ 
D2 �

�† �
� , �A22�

where K̄1= H̄1−ES̄1 and


C B

B† D
� = H0

Q − ES0
Q. �A23�

�ii� D1 and T1 are calculated by decimating only the upper
C matrix of the same finite 2N�2N matrix

�

C B

B† D
� �0 K̄1�

� 0

K̄1
†� 
C B

B† D
� �→ 
D2 T1

T1
† D1

� , �A24�

where D1 is N�N, while T1 is R�N.
�iii� �MR is a M �R matrix obtained by decimating the C

block of the following �N+M�� �N+M� matrix

� 0M KMR
Q

KRM
Q 
C B

B† D
� � → 
 0M �MR

�RM D2
� , �A25�

where 0M is the M-dimensional null matrix.
Finally we are now in the position of calculating the self-

energies. These are obtained from the surface Green’s func-
tions for the rotated and decimated leads �specified by the
matrices � and �� and have the form

	L = KML
Q �− D1 − T1

†GLT1�−1KLM
Q �A26�

and

	R = �MR�GR
−1 − �D2 − ���−1�RM. �A27�

Clearly our procedure not only regularizes the algorithm for
calculating the self-energies, giving it the necessary numeri-
cal stability, but also drastically reduces the degrees of free-
dom �orbitals� needed for solving the transport problem.
These go from N �the dimension of the original H1 matrix� to
R �the rank of H1�. Usually R�N and considerable compu-
tational overheads are saved.

Finally it is important to note that usually the rank R of

�H1

S1
�

is not necessarily the same of that of

�H1
†

S1
† � �R�� .

If R�
R, the GSVD transformation must be performed over
the matrices H1

† and S1
†. The procedure is similar to what was

described before but the final structure of the matrix KQ is
somehow different and so should be the decimation scheme.

APPENDIX B: THEORETICAL DESCRIPTION

1. Brief reminder of the Keldish formalism

The electronic part of the system we consider is described
in a general way by the Hamiltonian89

H�r�1,r�2,t� = H0�r�1,t���r�1 − r2� + H1�r�1,r�2� , �B1�

where H1 accounts for the Coulomb interaction among elec-
trons and H0 stands for all one-particle pieces of the Hamil-
tonian,

H0�r�,t� = Hkin�r�� + Hei�r�� + Vext�r�,t� . �B2�

Hkin and Hei are, respectively, the kinetic energy and the
Coulomb interaction between electrons and nuclei, and Vext
is an external electrostatic potential applied to the system at
t=0.

The electronic system evolves according to the time-
independent Hamiltonian H�t0=0−� for all negative times and
uses t0 as the synchronization time for all pictures. Moreover,
we assume that before Vext is switched on the system of
interacting electrons is in thermodynamic equilibrium at a
chemical potential �0. We then prepare the density matrix �
at t0 also. Therefore, expectation values of observables

�Ô�t�� = Tr��S�t�ÔS�t�
 = Tr��H�t0�ÔH�t�


=
1

Z
Tr�e−��H�t0�−�0N�ÔH�t�
 �B3�

are described in terms of the density matrix of an interacting
electron system at equilibrium.

These expectation values may be evaluated by using per-
turbation theory. Wick’s theorem may be applied only to en-
sembles of noninteracting electrons. In order to take advan-
tage of it, we must use a noninteracting density matrix such
as

�0�t0� =
e−��H0�t0�−�0N�

Z0
. �B4�

We then define the Hamiltonian in the Schrödinger picture
in the Keldish contour of Fig. 14 of the complex � plane as
follows:

KS��� = �HS��� , � � cH,

HS�0� − �0N , � � cV,
� �B5�

and analogous expressions for its noninteracting and interact-
ing pieces K0

S��� and K1
S���. We notice that the time variable

is doubled valued along the real axis. We must therefore
distinguish whether any real time lies on the upper �t+� or
lower �t−� branch.
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We then define Heisenberg �H� and Dirac �D� pictures in
the Keldish contour whereby evolution of operators is pro-
vided by

ÔH�t� = Tc exp
− i�
0+

0−

d��KS�����ÔS�t� = TcU�0+,0−�ÔS�t� ,

ÔD�t� = Tc exp
− i�
0+

0−

d��K0
S�����ÔS�t� = TcV0�0+,0−�ÔS�t�

= Tc exp
− i�
0+

0−

d��K1
D�����ÔH�t�

= TcV1�0+,0−�ÔH�t� ,

where Tc is the time-ordering operator on c. Expectation val-
ues of operators are then given by the statistical averages

�Ô�t�� =
Z0

Z
Tr��0V1�− i�,0+�Ô�t�
 , �B6�

which are evaluated in the noninteracting ensemble de-
scribed by �0.

The Green function of the system,

G�1,2� = �Tc�̂�1��̂†�2�� , �B7�

is a tool to compute the physical response of the system.
Thus the electron charge and current densities are simply

�n̂�1�� = − ieG�1+,1−� ,

�j�̂�1�� = −
e�

2m
��� 1 − �� 2 + 2iA� �1���G�1+,2��2=1−, �B8�

and depend on the applied the external potential. Here, �̂ and

�̂† denote creation and annihilation operators and �i�
= �r�i , ti�.

The Green’s function can be proven to satisfy the Dyson
equations

�i�t1
− H0�1��G�1,2� = ��1,2� + �	 � G��1,2� ,

�− i�t2
− H0�2��G�1,2� = ��1,2� + �G � 	��1,2� ,

where all time variables run through the Keldish contour c
and we follow the conventional shorthand

�A � B��1,2� = �
c

dx3dt3A�1,3�B�3,2� . �B9�

2. Connection to TDDFT

We now define a fictitious system of noninteracting elec-
trons described by the Hamiltonian90

Hs�r�,t� = Hkin�r�� + Vs�r�,t� , �B10�

where we assume that Hs is constant and that the system is in
thermodynamic equilibrium at chemical potential �s, all for
negative times. We also assume that Hs may be exactly di-
agonalized. We do not split a perturbing piece from the
Hamiltonian and, therefore, the Heisenberg and Dirac pic-
tures coincide. We again take t0 as the synchronization and
density-matrix preparation time. The density matrix

�s�t0� =
e−��Hs�t0�−�sN�

Z0
�B11�

and the time-evolution operator on the Keldish contour,

Us�0+,0−� = Tc exp
− i�
0+

0−

d��Ks
S����� , �B12�

completely determine the expectation value of observables of
this fictitious system:

�Ô�t��s = Tr��s
S�t�ÔS�t�
 = Tr��s

H�t0�ÔH�t�
 .

The Green’s function Gs�1,1��, whose time variables also lie
on c, satisfies the equations of motion

�i�t1
− Hs�1��Gs�1,2� = ��1,2� ,

FIG. 13. �Color online� Schematic representation of the decima-
tion strategy for the rotated K matrix KQ. Every symbol �dots,
boxes, etc.� represents a collection of degrees of freedom �a matrix
block� and every line the coupling. �a� Original structure after the
rotation Q. In the periodic leads the upper black dots represent the
blocks C of the matrix of Eq. �A18�. The large white rectangular
box represents the scattering region. �b� The degrees of freedom
marked with the red crosses �grey crosses� are decimated. �c� Final
structure after decimation. The new white symbols represent the
lead degrees of freedom of the principal layers adjacent to the scat-
tering region as they appear after the decimation.

FIG. 14. Keldish contour c in the complex � plane. The imagi-
nary time path is called c1 or cV in the text. The segment lying
below �above� the real-time axis is called c2 �c3�. The time loop
c2+c3 is called cH.
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�− i�t2
− Hs�2��Gs�1,2� = ��1,2� , �B13�

and provides the physical response of the system:

ns�Vs�1�� = − ieGs�1+,1−� ,

j�s�Vs�1�� = −
e�

2m
��� 1 − �� 2 + 2iA� �1���Gs�1+,2��2=1−.

We define the action functionals

R�V�x�� = i ln Tr�Û�− i�,0�� ,

Rs�Vs�x�� = i ln Tr�Ûs�− i�,0�� , �B14�

whose functional derivative with respect to the external po-
tential provides an alternative way to calculate the electronic
density. We adjust the potential Vs so that the densities of the
two systems are equal,

�R�V�x��
�V�x�

=
�R�Vs�x��

�Vs�x�
= �n�x�� . �B15�

Notice that we do not require that the current densities of the
two systems be equal.

We now perform a Legendre transform to find the new
actions

S�n� = − R�V�n�� +� dxn�x�V�x� ,

Ss�n� = − Rs�Vs�n�� +� dxn�x�Vs�x� , �B16�

such that

�S�n�x��
�n�x�

= V�x� ,

�Ss�n�x��
�n�x�

= Vs�x� . �B17�

We define an exchange-correlation functional

Ss�n� = S�n� +
1

2
� dx�VH�x�n�x� + Sxc�n�� , �B18�

whose functional derivative with respect to the density pro-
vides with a key relationship between the external potential
of the actual and fictitious systems,

Vs�x� = V�x� + VH�x� + Vxc�x� ,

Vxc�n�x�� =
�Sxc

�n�x�
. �B19�

Comparing the equations of motion of G and Gs, we find
an explicit relationship between the Green’s functions

G = Gs + Gs � �	 − VH − Vxc� � G �B20�

and the Sham-Schlüter equation for the self-energy:

Gs � �VH + Vxc� � G = Gs � 	�G� � G . �B21�

Iterating these equations once means equating both
Green’s functions, G=Gs, which in turn implies approximat-
ing j� by j�s. The resulting integral equation for 	 has

	�G��1,2� = �VH�n�1�� + Vxc�n�1��
��1,2� �B22�

as a trivial solution. This simple approximation has the virtue
that charge is conserved. This can be seen in two alternative
ways. First, the self-energy can be written as a
��G�-derivable function. Second, the fictitious system satis-
fies the continuity equation by construction. Subsequent it-
erations improve the physical content of G, but we have used
in our code this lowest-order approximation.

The Green’s function at two different times, G�t , t��, can
be viewed as the matrix element �t�G�t�� sandwiched be-
tween two time states of the whole set ��t�
 of times in the
Keldish contour. We split the contour into the three pieces c1,
,c2, and c3 of Fig. 2 and define the corresponding three time
subsets. The Green’s function can then be represented in ma-
trix form as

Ĝs�t,t�� = �G11�t,t�� G12�t,t�� G13�t,t��
G21�t,t�� G22�t,t�� G23�t,t��
G31�t,t�� G32�t,t�� G33�t,t��

�
= � Gc�t,t�� G
�t,t�� G13�t,t��

G��t,t�� Gac�t,t�� G13�t,t��
G31�t,t�� G31�t,t�� G33�t,t��

� .

The physical response of the system is therefore encapsu-
lated in the lesser Green function,

n�Vs�1�� = − iGs

�1+,1−� ,

j��Vs�1�� = −
�

2m
��� 1 − �� 2 + 2iA� �1���Gs


�1+,2��2=1−.

There are only five independent Gij out of the seven ma-
trix elements displayed above. A partial reduction to six ma-
trix elements in the Green’s function is achieved by the non-
unitary transformation

Ǧs�t,t�� = L�3Ĝs�t,t��L† = �GR GK �2G13

0 GA 0

0 �2G31 G33
� .

Both matrices satisfy the matrix equations of motion

�i�t1
− Hs�1��Ĝs�1,2� = ��r�1 − r�2��̂��1 − �2� ,

�i�t1
− Hs�1��Ǧs�1,2� = ��r�1 − r�2��̌��1 − �2� ,
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where the time � functions are defined as

�̂, �̌ = ���t1 − t2� 0 0

0 ±��t1 − t2� 0

0 0 ���1 − �2�
� , �B23�

with the minus �plus� sign corresponding to the caret �in-
verted caret� delta function. We shall drop the s subindex
from now on, since all the discussion that follows is valid
only for the ficticious system of noninteracting electrons.

Physical response is customarily written in terms of GR,A

and G
. Since there is no linear transformation which allows
one to group them in one common matrix, one uses Lan-
greth’s rules to find relationships among them.

3. Equations of motion in the localized wave function basis

The eigenstates of the system can be obtained by expand-
ing them in the basis of nonorthogonal states, ��n ,r� , t�
=�i,�ci��n , t����r�−R� i�, in terms of which the Schrödinger
equation reads

�iSi�j��t1
− Hi�j��t1��cj��n,t1� = 0. �B24�

Alternatively the equation of motion for either Green with
a caret or inverted caret functions is

�iSi�k �t1
− Hi�k �t1��Gk j��t1,t2� = �ij���e

�
lta�t1 − t2� .

�B25�

It is advantageous to perform a change of time variables
from t1, t2 to T=1/2�t1+ t2�, t= t1− t2. Then the Green’s func-
tions can be written as

Gi�j��t1,t2� = Gi�j��T,t� =� dE

2�
Gi�j��T,E�e−iEt.

�B26�

The electron charge and current densities are found from

n�r�,T� = �
i�j�

ni�j��r��rhoi�j��T� ,

j��r�,T� = �
i�j�

ji�j��r���i�j��T� , �B27�

where we have introduced the density matrix

�i�j��T� =� dE

2�i
Gi�ju


 �T,E� �B28�

and

ni�j��r�1,r�2� = e���r�1 − R� i����r�2 − R� j� ,

j�i�j��r�� = −
ie�

2m
��� r�1

− �� r�2
+ 2iA� �r�1���ni�j��r�1,r�2��r2=r1

.

The electric current through a given surface S is obtained
by integrating the current density over such a surface,

I = �
S

dS� · j��r�,t1� = �
i�j�

�i�j��t1��
S

dS� · j�i�j�

= �
i���j���

�i���j���Hi���j���, �B29�

where only those bonds �i��j���� pierced by the surface con-
tribute to the summation.

If the system is in thermodynamic equilibrium, the popu-
lation of electrons does not depend on time and follows the
Fermi-Dirac distribution function f���. Thereby the lesser
Green function can be written in terms of the retarded one as

Gi�j�

 �E� = f�E��Gi�j�

A �E� − Gi�j�
R �E�� = − 2if�E�Im�Gi�j�

R �E��

= 2�if�E��n
ci��n�cj�

* �n���E − �n� ,

where �n are the eigenvalues of the Hamiltonian. Therefore,
the density matrix can be obtained from the wave function
coefficients by just diagonalizing the Hamiltonian,

�i�j� = −
1

�
� dEf�E�Im�Gi�j�

R �E�� = �
n

ci��n�cj�
* �n�f��n� .

�B30�

4. Extended molecule setup

We now wish to partition the Green functions according
to the system setup of Fig. 1, where the left and right leads
remain in thermodynamic equilibrium defined by �L/R
=EF±eV /2 at all times. The extended molecule is also in
thermodynamic equilibrium for times t
0. The Hamiltonian
for negative times,

H�t 
 0� = h�t� = �HL + eV/2SL 0 0

0 HM 0

0 0 HR − eV/2SR
� ,

�B31�

serves to define the reference equilibrium Green functions
with a caret and inverted caret, that satisfy the equation of
motion

�iSi�,k �t1
− hi�,k �t1��Gk ,j��t1,t2� = �i,j��,��̂�t1 − t2� .

�B32�

For instance, the equation of motion for the retarded Green
function in frequency domain is just
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���+ − eV/2�SL − HL 0 0

0 �+SM − HM 0

0 0 ��+ + eV/2�SRM − HRM
��GL

0R 0 0

0 GM
0R 0

0 0 GR
0R� = �I 0 0

0 IM 0

0 0 I� , �B33�

while the lesser Green function is

G0
�E� = ��GL
0A�E� − GL

0R�E��f�E − eV/2� 0 0

0 GM
0
�E� 0

0 0 �GR
0A�E� − GR

0R�E��f�E + eV/2�
� . �B34�

The extended molecule is contacted by the electrodes at time t=0 through the Hamiltonian matrix elements

Vext = � 0 HLM + SLMeV/2 0

HML + SMLeV/2 0 HMR − SMReV/2

0 HRM − SRMeV/2 0
�F�t� , �B35�

where F�t� is zero for negative times and 1 for times larger than a certain characteristic time �M. The perturbation Vext drives
the core of the extended molecule out of equilibrium for positive times by populating it with a distribution of electrons that
does not follow Fermi-Dirac statistics. The distribution function of the noncontacted molecule gM


�E� is completely washed
out, but the density matrix of the system can still be determined from the equations of motion of the lesser and retarded Green
functions.

We seek to solve the equations of motion for times t!�M where all transient effects have vanished. This means, first, that
G1,3=G3,1=0, so that the matrix Green functions with a caret and inverted caret are block-diagonal; second, that the Hamil-
tonian is simply H; and third, that Green functions do not depend on the time variable T.

The retarded Green function is, simply,

� ��+ − eV/2�SL − HL ��+ − eV/2�SLM − HLM 0

��+ − eV/2�SML − HML �+SM − HM ��+ + eV/2�SMR − HMR

0 ��+ + eV/2�SRM − HRM ��+ + eV/2�SR − HR
�� GL

R GLM
R GLR

R

GML
R GM

R GMR
R

GRL
R GRM

R GR
R � = �I 0 0

0 IM 0

0 0 I� . �B36�

The lesser Green function is better expressed in terms of the retarded and advanced, and the reference equilibrium lesser
Green function, by using Langreth’s rules, as

G
 = GR�G0R�−1G0
�G0A�−1GA. �B37�

Straightforward matrix algebra then leads to Eqs. �16� and �19�.
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