gollum5s

In any paper or other academic publication containing results wholly or partially derived from the use of the Gollum package, the following paper must be cited:

GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

J. Ferrer, C. J. Lambert, V. M. Garcia-Suarez, D. Zs. Manrique, D. Visontai, L. Oroszlany, R. Rodriguez-Ferradas, I. Grace, S. W. D. Bailey, K. Gillemot, Hatef Sadeghi and L. A. Algharagholy, New Journal of Physics, 16, 093029 (2014). doi:10.1088/1367-2630/16/9/093029

 


 2016 Publications


1- Sangtarash, et al. Exploring quantum interference in heteroatom-substituted graphene-like molecules, Nanoscale (Communication), 2016, 8, 13199-13205. DOI: 10.1039/C6NR01907B

2- Gehring, et al. Quantum interference in graphene nanoconstrictions, Nano Letter, 2016, 16 (7), 4210-4216. DOI: 10.1021/acs.nanolett.6b01104

3- Kostyrko, et al. On determining defects identity in carbon nanotubes using charge probes, Applied Surface Science, 2016, 373, 13–18. DOI: 10.1016/j.apsusc.2015.10.155

4- Milan, et al. Solvent dependence of the single molecule conductance of oligoyne-based molecular wires, The Journal of Physical Chemistry C, 2016, 120 (29), pp 15666–15674. DOI: 10.1021/acs.jpcc.5b08877

5- Han, et al. Functionalization mediates heat transport in graphene nanoflakes, Nature Communications, 2016, 7, 11281. DOI: 10.1038/ncomms11281

6- Liu, et al. Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene–gold nanogap electrodes, Nanoscale, 2016, 8, 14507-14513. DOI: 10.1039/C6NR03807G

7- Sharma, et al. Optical fingerprints and electron transport properties of DNA bases adsorbed on monolayer MoS2, RSC Advances, 2016, 6, 60223-60230. DOI: 10.1039/C6RA10008B

8- Al-Owaedi, et al. Experimental and Computational Studies of the Single-Molecule Conductance of Ru (II) and Pt (II) trans-Bis (acetylide) Complexes, Organometallics, 2016. DOI: 10.1021/acs.organomet.6b00472

9- Almutlaq, et al. Identification of a positive-Seebeck-coefficient exohedral fullerene, Nanoscale, 2016, 8, 13597-13602. DOI: 10.1039/C6NR02291J

10- Davidson, et al. Effects of Electrode–Molecule Binding and Junction Geometry on the Single-Molecule Conductance of bis-2, 2′: 6′, 2 ″-Terpyridine-based Complexes, Inorganic Chemistry, 2016, 55 (6), 2691–2700. DOI: 10.1021/acs.inorgchem.5b02094

11- García-Fuente, et al. Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents, Physical Chemistry Chemical Physics, 2016. DOI: 10.1039/C6CP02961B

12- Al-Galiby, et al. Tuning the thermoelectric properties of metallo-porphyrins, Nanoscale, 2016,  8, 2428-2433. DOI: 10.1039/C5NR06966A

13- Manrique, et al. A new approach to materials discovery for electronic and thermoelectric properties of single-molecule junctions, Nano letters, 2016, 16 (2), 1308–1316. DOI: 10.1021/acs.nanolett.5b04715

14- Ozawa, et al. Synthesis and Single‐Molecule Conductance Study of Redox‐Active Ruthenium Complexes with Pyridyl and Dihydrobenzo [b] thiophene Anchoring Groups, Chemistry - A European Journal, 2016. DOI: 10.1002/chem.201600616

15- Martín-Rodríguez, et al. DFT approaches to transport calculations in magnetic single-molecule devices, Theoretical Chemistry Accounts, 2016, 135, 192.  DOI: 10.1007/s00214-016-1941-6

16- Lau, et al. Redox-dependent Franck-Condon blockade and avalanche transport in a graphene-fullerene single-molecule transistor, Nano Letters, 2016, 16 (1), pp 170–176. DOI: 10.1021/acs.nanolett.5b03434

17- Rincón-García, et al. Molecular design and control of fullerene-based bi-thermoelectric materials, Nature Materials, 2015, 15, 289–293.. DOI: 10.1038/nmat4487

18- Papior, et al. Improvements on non-equilibrium and transport Green function techniques: the next-generation transiesta, 2016.  arxiv.org/abs/1607.04464

19- Al-Galiby, Quantum theory of sensing and thermoelectricity in molecular nanostructures. PhD Thesis, 2016. http://eprints.lancs.ac.uk/id/eprint/80279

20- Sadeghi, Theory of electron and phonon transport in nano and molecular quantum devices: Design strategies for molecular electronics and thermoelectricity, PhD Thesis, 2016. http://eprints.lancs.ac.uk/id/eprint/80299

 


 2015 Publications


1- Sadeghi, et al. Conductance enlargement in picoscale electroburnt Graphene nanojunctions, Proceedings of the National Academy of Sciences (PNAS), 2015, 112, 9, 2658-2663. DOI: 10.1073/pnas.1418632112

2- Al-Galiby, et al. Exploiting the extended π-system of perylene bisimide for label-free single-molecule sensing. Journal of Materials Chemistry C, 2015, 3, 2101-2106. DOI: 10.1039/C4TC02897J

3- Manrique, et al. A quantum circuit rule for interference effects in single-molecule electrical junctions. Nature Communications, 2015, 6, 6389. DOI: 10.1038/ncomms7389

4- Geng, et al. Magic ratios for connectivity-driven electrical conductance of graphene-like molecules. Journal of American Chemical Society (JACS), 2015, 137(13), 4469-4476. DOI: 10.1021/jacs.5b00335

5- Sadeghi, et al. Enhanced thermoelectric efficiency of porous silicene nanoribbons. Scientific Reports, 2015, 5, 9514. DOI: 10.1038/srep09514

6- Sadeghi, et al. Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons. Beilstein Journal of Nanotechnology, 2015, 6, 1, 1176-1182.  DOI: 10.3762/bjnano.6.119

7- Sadeghi, et al. Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes. Beilstein Journal of Nanotechnology, 2015, 6, 1, 1413-1420. DOI: 10.3762/bjnano.6.146

8- Mol, et al. Graphene-porphyrin single-molecule transistors. Nanoscale, 2015, 7, 13181-13185. DOI: 10.1039/C5NR03294F

9- Sangtarash, et al. Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic. Journal of American Chemical Society (JACS), 2015, 137 (35), 11425–114317. DOI: 10.1021/jacs.5b06558

10- Li, et al. Three-state single-molecule naphthalenediimide switch: integration of a pendant redox unit for conductance tuning. Angewandte Chemie International Edition, 2015, 54, 13586. DOI: 10.1002/anie.201506458 

11- Sadeghi, et al. Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions, Physica E: Low-dimensional Systems and Nanostructures, 2015, DOI: 10.1016/j.physe.2015.09.005

12- Sadeghi, et al. Oligoyne molecular junctions for efficient room temperature thermoelectric power generation, Nano Letters, 2015, 15 (11), 7467 DOI: 10.1021/acs.nanolett.5b03033

13- Algharagholy, et al. Tuning thermoelectric properties of graphene/boron nitride heterostructures, Nanotechnology, 2015, 26, 475401. DOI: 10.1088/0957-4484/26/47/475401

14- Kostyrko, et al. On determining defects identity in carbon nanotubes using charge probes, Applied Surface Science, 2015, DOI: 10.1016/j.apsusc.2015.10.155

15- Ismael, et al. Increasing the thermopower of crown-ether-bridged anthraquinones, Nanoscale, 2015, 7, 17338. DOI: 10.1039/C5NR04907E

16- Algharagholy, et al. Sensing single molecules with carbon–boron-nitride nanotubes, Journal of Materials Chemistry C, 2015, 3, 10273. DOI: 10.1039/C5TC02284C

17- Gilbertson, et al. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection, Applied Physics Letters (APL), 2015, 107 (23), 233504. DOI: 10.1063/1.4936932

18- Sadeghi, et al. Negative differential electrical resistance of a rotational organic nanomotor, Beilstein Journal of Nanotechnology, 2015, 6, 2332. DOI: 10.3762/bjnano.6.240

19- Ismael, et al. Increasing the thermopower of crown-ether-bridged anthraquinones, Nanoscale, 2015, 7, 17338-17342. DOI: 10.1039/C5NR04907E

 


 2014 Publications


1- Balogh, et al. Precursor configurations and post-rupture evolution of Ag–CO–Ag single-molecule junctions. Nanoscale, 2014, 6, 24, 14784-14791. DOI: 10.1039/C4NR04645E

 

 

 

  logo oviedo