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Introduction
My work in Lancaster group together with:

Prof. Aneta Stefanovska

Dr Phil Clemson

Dr Tomislav Stankovski

Dr Gemma Lancaster
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Time-varying dynamics?

Nonautonomous (time-varying) dynamics in living (open) systems:

ẋ = f (x , t)

SYSTEM

ENVIRONMENT
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Time-varying dynamics?

SYSTEM
ENVIRONMENT

Examples, just to name a few:

in cardio-respiratory system

http://goo.gl/QXjI0v

in cells (metabolic oscillations)

http://goo.gl/SH1tmq
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Ability to resist external perturbations?

Living systems:

STRUCTURE: cells, tissues, blood vessels, organs, etc.

often, well defined objects
maintain their structure over long time
certain stability

FUNCTION: heart beat, respiration, etc.
maintenance of stable internal environment
certain stability

Yevhen F. Suprunenko Is it always easier to capture time-varying dynamics which resist the influence of external perturbations?April 13, 2016 6 / 27



Ability to resist external perturbations?

Simple mechanical analogies:
NOT STABLE function: Oscillations with phase φ

φ̇ = ω

φ̇ = ω + δω

STABLE function φ̇ = ω − sin(φ− θ)
θ̇ = ω

ψ = φ− θ, ψ̇ = − sinψ
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Ability to resist external perturbations?

NOT STABLE phase of oscillations

STABLE phase of oscillations
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Ability to resist external perturbations?

Example: artificial heart with frequency f = 1Hz, φ̇ = g(f , φ, t) + ξ(t)

Ability to resist: Dynamics: Fourier transform:
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Ability to resist external perturbations?

When frequency is time-dependent, when time-varying dynamics is
observed...

Observed dynamics: Does it resist perturbations?

?

?

How to quantify the ability to resist perturbations in time-varying
dynamics? ... using nonautonomous systems!
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Nonautonomous dynamical systems

Nonautonomous systems –
Skew-product flow from unidirectionally coupled differential
equations,

ṗ = f(p)
ẋ = g(x,p)

p ∈ Rn, x ∈ Rm,

p drives the nonautonomous system x
x is dependent on t , t0 and x0.

Thus a system is described by:

dx
dt

= g̃(x, t)

Kloeden and Rasmussen, Nonautonomous Dynamical Systems (2011)
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Nonautonomous dynamical systems
In polar coordinates (r , ϕ)
System p: ṙp = 0; ϕ̇p(t) = ωp(t);
System x: ṙx = εr rx(rp − rx); ϕ̇x(t) = −ε sin(ϕx − ϕp);
Black disk = (rp, ϕp(t)). Gray arrows = velocities ẋ; ε > ωp(t) > 0.
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Nonautonomous dynamical systems

Trajectories of x:
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Nonautonomous dynamical systems

Time-dependent point attractor exists:
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Time-dependent point attractor

Time-dependent point attractor (driven steady state) xA(t).

xA(t) satisfies mathematical conditions of pullback attraction (1), forward attraction (2)
and invariance (3):

limt0→−∞
x(t , t0, x0) = xA(t) (1)

limt→∞x(t , t0, x0) = xA(t) (2)

x(t , t0, xA(t0)) = xA(t) (3)

Kloeden and Rasmussen, Nonautonomous Dynamical Systems (2011)
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Nonautonomous dynamical systems
Time-dependent point attractor in phase and amplitude dynamics:
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Chronotaxic systems

We therefore define a new class of nonautonomous oscillators:
chronotaxic systems (from chronos – time and taxis – order).

Suprunenko, Clemson and Stefanovska, PRL (2013); PRE (2014)
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Chronotaxic Systems: Defining concepts

1) Nonautonomous systems.
2) Time-dependent point attractor (driven
steady state) xA(t).

dx
dt

= g(x, t); (4) limt0→−∞
x(t , t0, x0) = xA(t); (5)

limt→∞x(t , t0, x0) = xA(t); (6)

x(t , t0, xA(t0)) = xA(t). (7)

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems (American
Mathematical Soc., 2011)
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Chronotaxic systems: Definition
Chronotaxic systems are nonautonomous oscillatory systems x = g(x, t) with
solutions x(t , t0, x0) and with a time-dependent point attractor (driven steady
state) xA(t) which satisfies mathematical conditions of pullback attraction, forward
attraction and invariance:

limt0→−∞
x(t , t0, x0) = xA(t)

limt→∞x(t , t0, x0) = xA(t)

x(t , t0, xA(t0)) = xA(t)

Additional requirement: attraction at all times, deviations δxA(t) = x(t)− xA(t)
from point attractor xA(t) in unperturbed system can only decay

d
dt
|δxA|2 = 2δxA T J(xA, t)δx < 0 and J(x, t) =

1
2

(
∂g/∂x + ∂g/∂xT

)
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Chronotaxic systems: Alternative definition

Alternative formulation is based on the contraction theory (W. Lohmiller and
J.-J. Slotine (1998) ). The explicit knowledge of xA(t) is not required.

A chronotaxic system is an oscillatory nonautonomous dynamical system ẋ = g(x, t)
which has a contraction region C in the phase space, C is determined by

∀x ∈ C ∃β > 0, ∀t :
1
2

(
∂g(x, t)
∂x

+
∂g(x, t)
∂x

T
)
≤ −βI < 0,

C contains a finite non-zero area A′ ⊂ C such that states of a system inside A′ do not
leave A′, i.e. ∀t0 < t , ∀x0 ∈ A′(t0), x(t , t0, x0) ∈ A′(t).

Y. S., Stefanovska A., PRE (2014)
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Chronotaxic systems: Phase oscillators

Phase α of the phase oscillator which is

conventional

does not resist external perturbations ξ, as
shown in this column:

chronotaxic

is able to resist external perturbations ξ, as
shown in this column:

α̇ = ω0 + ξ
α̇ = gα(eiαx , t) + ξ

∂
∂α

gα(eiαx , t)
∣∣
α=αA(t) < 0.

Y.F.S., Clemson P.T., Stefanovska A., PRE (2014)
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Chronotaxic systems: Poincare oscillator

Nonautonomous (driven) Poincare oscillator:

ẋ = ε
Γ

(
rp −

√
x2 + y2

)
x − ω0y − εA(t) (x − rp cosϕp(t)) + ξ1(t),

ẏ = ε
Γ

(
rp −

√
x2 + y2

)
y + ω0x − εA(t) (y − rp sinϕp(t)) + ξ2(t).

nonautonomous system:
p is defined by polar coordinates rp, ϕp(t);
x is defined by x , y ;
εA(t) determines coupling;
perturbations are defined by ξ1(t), ξ2(t);
phase and amplitude dynamics are coupled.

Y.F.S., Stefanovska A., PRE (2014)
Yevhen F. Suprunenko Is it always easier to capture time-varying dynamics which resist the influence of external perturbations?April 13, 2016 22 / 27



Nonautonomous (driven) Poincare oscillator: ϕ̇p(t) = ωp(t) = const;

ẋ = εΓ

(
rp −

√
x2 + y2

)
x − ω0y − εA(t) (x − rp cosϕp(t)) + ξ1(t),

ẏ = εΓ

(
rp −

√
x2 + y2

)
y + ω0x − εA(t) (y − rp sinϕp(t)) + ξ2(t).

Figure shows:

snapshots of phase portrait of this
system when it is:
(a) non-chronotaxic;
(b),(c),(d),(e) - chronotaxic
(time-dependent point attractor is
shown as a black disk, the green
point is an unstable node, the blue
point is a saddle point);

(f) regions of different chronotaxic
dynamics.

Y.F.S., Stefanovska A., PRE (2014)
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Parameters: white Gaussian noise 〈ξj(t)〉 = 0, 〈ξi(t)ξj(t ′)〉 = σ2δijδ(t − t ′),
ωp/(2π) ≈ 0.08Hz, εΓ = 7, rp = 1; (a) εA = 0.3, σ = 0.1; (b) εA = 0.47, σ = 0.3
(c) εA = 0.47, σ = 0.6 (d) εA = 0.9, σ = 1.2.
In chronotaxic systems (b),(c),(d) the frequency ωp/(2π) determines a frequency
of 0.08Hz which resists external perturbations, as shown in wavelet transforms;
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Cardio-respiratory system

Yevhen F. Suprunenko Is it always easier to capture time-varying dynamics which resist the influence of external perturbations?April 13, 2016 25 / 27



Cardio-respiratory system

Y.F.S., Clemson P.T., Stefanovska A., PRL 111, 024101 (2013)

Clemson P.T., Y.F.S., Stefanovska A., PRE (2014).

(1) The paced respiration drives HRV;

(2) We are looking for a new feature - a
stability of a time-varying dynamics;

(3) Stability in time-varying HRV is found
using a single time-series, and
checked using both time-series;

(4) Alterations in chronotaxicity may help
to distinguish normal and altered
states.

Yevhen F. Suprunenko Is it always easier to capture time-varying dynamics which resist the influence of external perturbations?April 13, 2016 26 / 27



Summary

Chronotaxicity as an ability to resist external perturbations:

helps to capture time-variability;
is a quantifiable characteristics;
may help to identify subsystems which maintain their function, and
to clarify functional organization within a living system.

Thank you for your attention!
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