9th meeting of

European Study Group on Cardiovascular Oscillations

Approximate and Identical Synchronization in Coupled Systems

Chih-Wen Shih Department of Applied Mathematics National Chiao Tung University Hsinchu, Taiwan

April 13, 2016

Coupled systems

ODE:
$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, t), \ \mathbf{x} = (x_1, ..., x_K)$$

ODE:
$$\frac{d\mathbf{y}}{dt} = \tilde{\mathbf{F}}(\mathbf{y}, t), \ \mathbf{y} = (y_1, ..., y_K)$$

Coupled systems

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, t) + \mathbf{G}(\mathbf{x}, \mathbf{y}, t)$$
$$\frac{d\mathbf{y}}{dt} = \tilde{\mathbf{F}}(\mathbf{y}, t) + \tilde{\mathbf{G}}(\mathbf{y}, \mathbf{x}, t)$$

e.g. $\mathbf{G}(\mathbf{x}, \mathbf{y}, t) = W \cdot (\mathbf{y} - \mathbf{x})$ $\tilde{\mathbf{G}}(\mathbf{y}, \mathbf{x}, t) = \tilde{W} \cdot (\mathbf{x} - \mathbf{y})$

linear coupling

Delay equations and coupled-cell systems

• Single cell

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}_{t}, t), \qquad \mathbf{x}(t) \in \mathbb{R}^{K}$$
$$\mathbf{x}_{t}(\theta) = \mathbf{x}(t+\theta), \ \theta \in [-\tau_{M}, 0]$$

internal delays, time delay in intracellular process

• Coupled cells (cell-to-cell) $\begin{cases}
\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}_{t}, t) + \mathbf{G}(\mathbf{x}_{t}, \mathbf{y}_{t}, t) \\
\frac{d\mathbf{y}}{dt} = \tilde{\mathbf{F}}(\mathbf{y}_{t}, t) + \tilde{\mathbf{G}}(\mathbf{y}_{t}, \mathbf{x}_{t}, t)
\end{cases}$

transmission delays, time delay in intercellular process

Linearly coupled systems with delays

e.g. linear coupling with commnication delay (discrete-type)

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, t) + k \cdot [\mathbf{y}(t - \tau) - \mathbf{x}(t)] \\ \frac{d\mathbf{y}}{dt} = \mathbf{F}(\mathbf{y}, t) + k \cdot [\mathbf{x}(t - \tau) - \mathbf{y}(t)] \end{cases}$$

Coupled cells and synchronization

When $\mathbf{F} = \tilde{\mathbf{F}}, \mathbf{G} = \tilde{\mathbf{G}}$: identical subsystems, symmetric coupling

$$\begin{cases} \frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}_t, t) + \mathbf{G}(\mathbf{x}_t, \mathbf{y}_t, t) \\ \frac{d\mathbf{y}}{dt} = \mathbf{F}(\mathbf{y}_t, t) + \mathbf{G}(\mathbf{y}_t, \mathbf{x}_t, t) \end{cases}$$

Coupled system attains globally identical synchronization if $x_i(t) - y_i(t) \rightarrow 0$, as $t \rightarrow \infty$, i = 1, ..., K

for all solutions $(\mathbf{x}(t), \mathbf{y}(t))$, where

 $\mathbf{x}(t) = (x_1(t), ..., x_K(t)),$ $\mathbf{y}(t) = (y_1(t), ..., y_K(t)),$

Synchronous set

In this case, synchronous set $S := \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} = \mathbf{y}\}$ is positively invariant

 $\mathbf{x}(t)$ is a solution of $\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}_t, t) + \mathbf{G}(\mathbf{x}_t, \mathbf{x}_t, t)$

 \Rightarrow (**x**(*t*), **x**(*t*)) is a solution of \langle

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}_t, t) + \mathbf{G}(\mathbf{x}_t, \mathbf{y}_t, t)$$
$$\frac{d\mathbf{y}}{dt} = \mathbf{F}(\mathbf{y}_t, t) + \mathbf{G}(\mathbf{y}_t, \mathbf{x}_t, t)$$

Coupled cells and synchronization

When $\mathbf{F} \neq \tilde{\mathbf{F}}, \mathbf{G} \neq \overline{\tilde{\mathbf{G}}},$

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}_t, t) + \mathbf{G}(\mathbf{x}_t, \mathbf{y}_t, t)$$
$$\frac{d\mathbf{y}}{dt} = \tilde{\mathbf{F}}(\mathbf{y}_t, t) + \tilde{\mathbf{G}}(\mathbf{y}_t, \mathbf{x}_t, t)$$

the synchronous set $S \coloneqq \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} = \mathbf{y}\}$ is not positively invariant in general

Coupled system attains (globally) approximate synchronization if $|x_i(t) - y_i(t)| < \varepsilon$, as $t \to \infty$, i = 1, ..., Kfor all solutions ($\mathbf{x}(t), \mathbf{y}(t)$), where $\mathbf{x}(t) = (x_1(t), ..., x_K(t)), \ \mathbf{y}(t) = (y_1(t), ..., y_K(t)),$

This ε , synchronization error, would be meaningful if it depends and decreases with decreasing $|\delta F|$ and $|\delta G|$

where $\left|\delta F\right| = |F - \tilde{F}|$ $\left|\delta G\right| = |G - \tilde{G}|$

Coupled network systems

Coupled *N* subsystems

$$\dot{\mathbf{x}}_i = \mathbf{F}_i(\mathbf{x}_i^t, t) + \sum_{j \in \mathbf{N}} w_{ij}(t) \ \mathbf{G}_{ij}(\mathbf{x}_i^t, \mathbf{y}_j^t, t), \quad i \in \mathbf{N} \coloneqq \{1, \dots, N\}$$

 $\mathbf{x}_i^t(\theta) = \mathbf{x}_i(t+\theta),$

 $W(t) = [w_{ij}(t)]$: coupling matrix

 $\kappa_i(t) = \sum_{j \in \mathbf{N}} w_{ij}(t): i \text{th row sum of coupling matrix}$ The coupled system is called homogeneous if $\mathbf{F}_i = \mathbf{F}_i$, for all *i*, *j*

The synchronous set
$$S \coloneqq \{(\mathbf{x}_1, ..., \mathbf{x}_N) : \mathbf{x}_i = \mathbf{x}_j, \forall i, j = 1, ..., N\}$$

is positively invariant

if the coupled system is homogeneous, has identical row sums and delays

$\dot{\mathbf{x}}_i = \mathbf{F}_i(\mathbf{x}_i^t, t) + \sum_{j \in \mathbf{N}} w_{ij}(t) \ \mathbf{G}_{ij}(\mathbf{x}_i^t, \mathbf{y}_j^t, t), \quad i \in \mathbf{N} \coloneqq \{1, ..., N\}$

• linear coupling: G_{ij} is linear

• diffusive coupling: $\kappa_i \equiv 0$, for all *i*

 $\kappa_i(t) = \sum_{j \in \mathbf{N}} w_{ij}(t)$: *i*th row sum of coupling matrix

-1	1	0	0	• • •	0 0
1	-2	1	0	• • •	0 0
0	1	-2	1	•••	0 0
•	•	•	• •		: :
0	0	0	0	•••	-2 1
0	0	0	0	• • •	1 -1

Heterogeneous systems

 Due to various possible deviations, natural imperfection, and wider consideration such as real-world complex networks, heterogeneous networks which consist of non-identical nodes are more practical.

 In neural connections, there are gap-junctional (diffusive) and chemical synaptic coupling (nonlinear, not necessarily diffusive)

 In gene regulation, the coupling (connection, reception, binding) among cells is not linear, nor diffusive.

Notions of synchronization

- Identical synchronization for homogeneous coupled systems
- Approximate synchronization for heterogeneous coupled systems
 - Asymptotic synchronization for heterogeneous coupled systems

 $\dot{\mathbf{x}}_{i} = \mathbf{F}_{i}(\mathbf{x}_{i}^{t}, t) + \mathbf{c} \cdot \sum_{j \in \mathbf{N}} w_{ij}(t) \ \mathbf{G}_{ij}(\mathbf{x}_{i}^{t}, \mathbf{y}_{j}^{t}, t), \quad i \in \mathbf{N} \coloneqq \{1, ..., N\}$ $| x_{i}(t) - y_{i}(t) | < \varepsilon, \text{ as } t \to \infty, \quad i = 1, ..., n$ $\varepsilon \to 0, \text{ as } \mathbf{c} \to \infty$

Does asymptotic synchronization always hold when approximate synchronization holds ?

Jack Hale [Diffusive coupling, dissipation, and synchronization, J. Dynamics and Differential Equations, 1997]

Via theory of invariant manifold and perturbation property

e.g. coupled Lorenz systems

Research on synchronization

- Methodologies for concluding global synchronization largely involve the notion of Lyapunov functions.
- Phase synchronization, lag synchronization, partial synchronization, generalized synchronization, and almost synchronization
- Identical synchronization of homogeneous networks is the simplest form of synchronization, and has been intensively studied.
- Most of the works require diffusive coupling, and/or linear coupling, due to mathematical treatment.

Approximate synchronization

We consider approximate synchronization for heterogeneous networks which consist of not necessarily identical subsystems

Synchronous set $S \coloneqq \{(\mathbf{x}_1, ..., \mathbf{x}_N) : \mathbf{x}_i = \mathbf{x}_j, \forall i, j = 1, ..., N\}$ is not positively invariant in general.

Some methods for studying identical synchronization are not applicable.

$\dot{\mathbf{x}}_{i} = \mathbf{F}_{i}(\mathbf{x}_{i}^{t}, t) + \sum_{j \in \mathbf{N}} w_{ij}(t) \ \mathbf{G}_{ij}(\mathbf{x}_{i}^{t}, \mathbf{y}_{j}^{t}, t), \ i \in \mathbf{N} \coloneqq \{1, ..., N\}$

Let $z_{i,k} = x_{i,k} - x_{i+1,k}$

Via sequential contracting, estimate $|z_{i,k}(t)|$ successively, and iteratively, and converted the lengths of intervals where $z_{i,k}(t)$ lie to the Gauss-Seidel iteration for a system of linear algebraic equations.

Condition of convergence for this Gauss-Seidel iteration then leads to synchronization criterion.

We established a theorem which gives a delay-dependent criterion and a delay-independent criterion for approximate synchronization of the general coupled network systems.

Conclusion

We have developed a mathematical framework to investigate approximate synchronization for the general coupled systems, and network systems.

 Approximate synchronization yields asymptotic synchronization in some cases, but not all.

Linearization over-manipulates the nonlinear terms.

Sequential contracting: start with a preliminary estimate on the absorbing set, use mean value theorem, some estimates, structure about dissipation in the equations, iterative argument. Shih & Tseng, "A general approach to synchronization of coupled cells", 2013, SIAM J. Applied Dynamical Systems

Shih & Tseng, "From approximate synchronization to identical synchronization in coupled systems", preprint

Thank you for your attention!