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Introduction 

Aging strongly affects cardiovascular control and the strength of  
the relations among cardiovascular variables. 
 
Recently, transfer entropy decomposition strategies have allowed  
the decomposition of the information transferred from a pair of  
exogenous sources to a target variable into quotes genuinely  
transferred from each exogenous variable to the destination and  
a term describing the interactions between the two drivers in  
contributing to the information carried by the target. 
 
According to these information decomposition strategies redundant  
or synergic contributions  of the two drivers to the information  
carried by the target can be disentangled. 



Aims 

To exploit a transfer entropy decomposition strategy for the  
quantification of redundancy/synergy in cardiovascular  
control 
 
To track the evolution of the redundancy/synergy in  
cardiovascular control with age 



Modeling dynamical interactions in the full and  
restricted universes of knowledge (Ωs) 

In the full Ω = {y, x1, x2} the dynamic of y is described as  
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In the restricted Ω = Ω\x1= {y, x2} the dynamic of y is described as  
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In the restricted Ω = Ω\x2= {y, x1} the dynamic of y is described as  
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In the restricted Ω = Ω\x1x2= {y} the dynamic of y is described as  
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One-step-ahead prediction in the full and  
restricted Ωs 

In the full Ω = {y, x1, x2} the one-step-ahead prediction is  
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In the restricted Ω = Ω\x1= {y, x2} the one-step-ahead prediction is  
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In the restricted Ω = Ω\x2= {y, x1} the one-step-ahead prediction is  
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In the restricted Ω = Ω\x1x2= {y} the one-step-ahead prediction is  
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Given the one-step-ahead prediction of y, the MSPE of y can be 
computed as  

>     λ2 =      Σ      1 
N i=1 

N 

Mean squared prediction error (MSPE) 

In the full Ω = {y, x1, x2} the MSPE of y is  

In the restricted Ω = Ω\x1= {y, x2} the MSPE of y is   

In the restricted Ω = Ω\x2= {y, x1} the MSPE of y is  

In the restricted Ω = Ω\x1x2= {y} the MSPE of y is  

    λ2 = λ2|Ω              

    λ2 = λ2|Ω\x1
              

    λ2 = λ2|Ω\x2
               

    λ2 = λ2|Ω\x1x2
               



Assessing the transfer entropy (TE)  
from x1 and x2 to y  

TEx1,x2 → y = 
     λ2|Ω\x1x2 

     λ2|Ω 

    1 

    2     log 

Under the hypothesis of Gaussianity, the TE from x1 and x2 to y 
can be computed as 

where λ2|Ω and λ2|Ω\x1x2
 are the variances of the prediction error 

of the ARX1X2 and AR models in Ω and Ω\x1x2 respectively  
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Assessing the conditional TE (CTE)  
from x1 and x2 to y given x2 

CTEx1,x2 → y|x2
 = 

     λ2|Ω\x1 

     λ2|Ω 
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    2     log 

Under the hypothesis of Gaussianity, the CTE from x1 and x2 to y 
given x2 can be computed as 

where λ2|Ω and λ2|Ω\x1
 are the variances of the prediction error 

of the ARX1X2 and ARX2 models in Ω and Ω\x1 respectively  



CTEx1,x2→y|x1 
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Assessing the conditional TE (CTE)  
from x1 and x2 to y given x1 

CTEx1,x2 → y|x1
 = 

     λ2|Ω\x2 

     λ2|Ω 

    1 

    2     log 

Under the hypothesis of Gaussianity, the CTE from x1 and x2 to y 
given x1 can be computed as 

where λ2|Ω and λ2|Ω\x2
 are the variances of the prediction error 

of the ARX1X2 and ARX1 models in Ω and Ω\x2 respectively  



ITEx1,x2→y 
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Assessing the interactive TE (ITE)  
from x1 and x2 to y  

Defined  

where λ2|Ω\x1x2
, λ2|Ω, λ2|Ω\x1

, and λ2|Ω\x2
 are the variances of the  

prediction error of the AR, ARX1X2, ARX2 and ARX1  models  
in Ω\x1x2, Ω, Ω\x1 and Ω\x2 respectively  

ITEx1,x2 → y = 
     λ2|Ω\x1x2 
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    . 

    . 

ITEx1,x2 → y = TEx1,x2 → y – (CTEx1,x2 → y|x2
 + CTEx1,x2 → y|x1

) 

it can be computed as 



Experimental protocol 

We studied 100 nonsmoking healthy humans (54 males,  
age from 21 to 70 years) 
    
The population was composed by 20 subjects in each of the  
 following age bins 
 
   - from 21 to 30 years (10 males, median age=26 years);  
   - from 31 to 40 years (11 males, median age=34 years);  
   - from 41 to 50 years (10 males, median age=45 years);  
   - from 51 to 60 years (10 males, median age=55 years);  
   - from 61 to 70 years (13 males, median age=65 years). 

We recorded ECG (lead II), noninvasive finger arterial pressure  
(Finometer PRO) and respiration (thoracic belt) at 400 Hz at 
rest in supine position (REST) and during active standing (STAND) 

A.M. Catai et al, Entropy, 16, 6686-6704, 2014. 



Cardiovascular variables 

ECG 

Arterial pressure 

Respiration 



Beat-to-beat variability series  

HP={HP(i), i=1,…,N} 

SAP={SAP(i), i=1,…,N} 

R={R(i), i=1,…,N} 

The full Ω = {HP, SAP, R}  

1)   y = HP, x1 = SAP and x2 = R 
2)   y = SAP, x1 = HP and x2 = R 



Percentage of subjects featuring redundancy (i.e. ITE>0) 



Linear correlation analysis of the terms of the TE  
decomposition of HP on age at REST  

and during STAND 



Linear correlation analysis of the terms of the TE  
decomposition of SAP on age at REST  

and during STAND 



Conclusions 

The decrease of the information genuinely transferred from HP  
to SAP and from R to SAP with age can be taken as an indication  
of the tendency toward the more important use of cardiac mechanics  
to control arterial pressure and the augmentation of the arterial  
stiffness during senescence.  
 
SAP and R contributed redundantly to the cardiac control and  
the amount of SAP-R redundancy gradually declined with age,  
thus suggesting that its reduction might contribute to increase  
the cardiac frailty in old people.  
 
HP and R contributed redundantly to the vascular control and  
the amount of HP-R redundancy was unrelated to age, thus  
suggesting that the maintenance of HP-R redundancy with age  
might contribute to the resilience of the vascular system  
in healthy senescence.  
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