

Quasiperiodic partial synchronization and macroscopic chaos in populations of inhibitory neurons with delay

Ernest Montbrió

Center for Brain and Cognition-Univestitat Pompeu Fabra

Introduction

- Inhibitory networks are responsible for the generation of fast neuronal oscillations (> 50 Hz)
- Oscillations due to inhibition and synaptic delays
- Individual neurons do not fire at the freq of the fast, mean field oscillations
- Challenge for canonical, analytically tractable, phase oscillator models (Kuramoto model)
- Increasing interest for more complex forms of synchronization (*quasiperiodic partial synchronization, chimera states...*)

Kuramoto model with time delay

Full synchronization

Yeung, Strogatz, Phys Rev Lett (1999)

Kuramoto model with time delay phase diagram

Same dynamics for Excitation and for Inhibition

Yeung, Strogatz, Phys Rev Lett (1999)

Neuronal Mean field models Heuristic Firing Rate Equations

Single excitatory population:

Wilson and Cowan, 1972; Amari 1974

Fast oscillations in HFRE Inhibitory population with delay

$$\tau \frac{dr_I}{dt} = -r_I + \Phi_I \left(I_{IX} - J_{II} r_I (t - D) \right)$$

• Oscillations at a frequency f_c appear when $\tilde{J}_{II} > J_c$

• For
$$D \ll \tau$$
 , $J_c \sim \pi \tau/(2D), f_c \sim 1/(4D)$

If D = 5 ms, freqs. between 50 and 100 Hz

Roxin, Brunel, Hansel, *PRL* (2005) Roxin, Montbrió, *Phys D* (2011)

Quadratic Integrate-and-fire neuron

$$\dot{V} = I + V^2$$
, if $V \ge V_{\text{peak}}$, then $V \leftarrow V_{\text{reset}}$

Excitable dynamics:

Oscillatory dynamics:

Ensemble of recurrently coupled QIF neurons with synaptic time delay

$$\tau \dot{V}_j = V_j^2 + I_j,$$
$$I_j = \eta_j + J s_D,$$

- Coupling: *J*>0: Excitation; *J*<0: Inhibition
- Mean synaptic activity ($s_D = s(t-D)$): $s_D = \frac{\tau}{N\tau_s} \sum_{i=1}^{N} \sum_{k} \int_{t-D-\tau_s}^{t-D} \delta(t'-t_j^k) dt'.$
- Fast synapses (τ_s ->0): $s_D = \tau r_D$

Population-Averaged Firing Rate

Correspondence of QIF, Winfree and Theta models

$$\tau \dot{V}_j = V_j^2 + \eta_j + J\tau r_D$$

When: $V_{\text{peak}} = -V_{\text{reset}} \rightarrow \text{infty}$:

- Inter-spike Interval self-oscillatory neurons ($\eta > 0, J=0$): ISI = $\pi \tau / \sqrt{\eta_j}$.
- Winfree Model (identical, self-oscillatory neurons): $V_j = \sqrt{\eta} \tan\left(\frac{\psi_j}{2}\right)$,

$$\tau \dot{\psi}_j = 2\sqrt{\eta} + (1 + \cos \psi_j) \frac{J}{\sqrt{\eta}} \tau r_D.$$

• Theta-Neurons ($\tau=1$): $V_j = \tan(\theta_j/2)$

$$\tau \dot{\theta}_j = (1 - \cos \theta_j) + (1 + \cos \theta_j) \left[J \tau r_D + \eta_j \right]$$

Numerical simulations, QIF neurons J=-1.65, D=2.5 ($\eta=\tau=1$)

Neurons display quasiperiodic dynamics for inhibbitory (J<0) coupling only

Numerical simulations (II) $J=-1.85, D=2.5 (\eta=\tau=1)$

Numerical simulations (III) Macroscopic chaos? $J=-3.8, D=3 (\eta=\tau=1)$

Derivation of exact Firing Rate Equations

- Spiking neurons: QIF
- All-to-all coupling
- Quenched heterogeneity (no noise)
- Exact in the thermodynamic limit

Thermodynamic limit Continuous formulation

$ ho(V \eta,t)dV$	Fraction of neurons with V between V and $V+dV$
	and parameter η at time <i>t</i>

 $g(\eta)$ PDF of the currents η

The Continuity Equation is

 $\tau \partial_t \rho + \partial_V \left[(V^2 + \eta + J\tau r_D) \rho \right] = 0.$

For each value of η !! Then the total density at time *t* is given by: $\int_{-\infty}^{\infty} \rho(V|\eta, t) g(\eta) d\eta$

Lorentzian Ansatz

Equivalence btw the LA and the Ott-Antonsen ansatz

- The LA is the Poisson Kernel in the **positive semi-plane** (*x>0*)
- The OA ansatz is Poisson Kernel in the **unit disk** (R<=1).

Lorentzian Ansatz Firing Rate & Mean Membrane potential

Firing Rate: Prob flux at threshold: $r(\eta, t) = \rho(V \to \infty | \eta, t) \dot{V}(V \to \infty | \eta, t)$

Firing Rate

$$x(\eta, t) = \pi r(\eta, t) \qquad r(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} x(\eta, t) g(\eta) d\eta$$

Mean Membrane potential

$$y(\eta, t) = \text{P.V.} \int_{-\infty}^{\infty} \rho(V|\eta, t) V \, dV$$

$$v(t) = \int_{-\infty}^{\infty} y(\eta, t) g(\eta) d\eta$$

2D Firing Rate equations (FRE)

Lorentzian distribution of currents

$$g(\eta) = \frac{1}{\pi} \frac{\Delta}{(\eta - \bar{\eta})^2 + \Delta^2}$$

Cauchy Residue's theorem to solve

$$r(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} x(\eta, t) g(\eta) d\eta$$

Substituting the LA in the continuity equation:

$$\tau \dot{r} = \frac{\Delta}{\pi \tau} + 2rv,$$

$$\tau \dot{v} = v^2 + \bar{\eta} + J\tau r_D - \tau^2 \pi^2 r^2.$$

 $\tau = \eta = 1$, without loss of generality

Quasiperiodic partial synchronization in inhibitory networks

Van Vresswijk, *PRE* (1996); Mohanti, Politi, *J. Phys A* (2006); Rosenblum, Pikovsky, *PRL* 2007; Pikovsky, Rosenblum *Physica D* (2009); Politi, Rosenblum, *PRE* (2015)

Increasing inhibition... $(J=-1.65, D=2.5, \Delta=0)$

Period of oscillations remains constant

Limit cycle is symmetric $V \rightarrow -V$

Using FRE for Δ =0, this symmetry implies that:

$$T_m = \frac{2D}{m}$$
, with $m = 1, 3, \dots$

The symmetry is broken at period doubling bif...

Macroscopic chaos through quasiperiodic partial sync $(J=-3.8, D=3, \Delta=0)$

The QPS undergoes a succession of period doubling bifs leading to macroscopic chaos (using the FRE: Largest Lyapunov exp. 0.055)

Analysis of FRE

$$\tau \dot{r} = \frac{\Delta}{\pi \tau} + 2rv,$$

$$\tau \dot{v} = v^2 + \bar{\eta} + J\tau r_D - \tau^2 \pi^2 r^2.$$

For identical neurons, the only fixed point is:

 $((J + \sqrt{J^2 + 4\pi^2})/(2\pi^2), 0)$

Linearizing around the f.p. and imposing the cond. of marginal stab: λ = i Ω

Hopf boundaries:

$$\Omega_n = n\pi/D. \qquad J_H^{(n)} = \pi(\Omega_n^2 - 4) \times \begin{cases} (6\Omega_n^2 + 12)^{-1/2} \\ (2\Omega_n^2 - 4)^{-1/2} \end{cases}$$

for odd nfor even n

Analysis of the fully synchronized state Winfree model

Stability of the fully sync state in the the Winfree model:

$$\tau \dot{\psi}_j = 2\sqrt{\eta} + (1 + \cos\psi_j) \frac{J}{\sqrt{\eta}} \tau r_D.$$

We find the boundaries:

$$J_c^{(m)} = 2 \cot\left(\frac{D}{m}\right), \quad \text{with } m = 1, 3, 5, \dots$$

And by the evently spaced lines:

$$D = n\pi$$
 ($n = 1, 2...$).

Phase diagram for identical neurons

Shaded regions: Asynch/Incoherent state **STABLE**

Dashed regions: Full sync **UNSTABLE**

Onset of QPS and heterogeneity

TC bifs. are not robust

bistability btw two partially sync states remains, though

Macroscopic chaos in heterogeneous networks

Thanks!

Diego Pazó Instituto de Física de Cantabria (CSIC-Universidad Cantabria)

ITN project: Complex Oscillatory Systems: Modeling and Analysis

Fedrico Devalle

Poster: Solvable model for a network of spiking neurons with delays

