# Analysing brain dynamics with a novel mutual information estimator

# phase, power and their representational interactions

Robin Ince University of Glasgow

## Mutual Information (MI)

- Statistical test for dependence with a meaningful effect size (bits)
- In general sensitive to any type of dependence
- Variables can be discrete / continuous; uni- / multidimensional
- Additive effect size: allows for higher-order quantities (more than two variables)

## Mutual Information (MI)

• Entropy (*H*) : a measure of uncertainty / spread / dispersion (c.f. variance)

$$I(X;Y) = H(X) - H(X|Y)$$
$$I(X;Y) = H(Y) - H(Y|X)$$
$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

## Estimating MI : Binning

- Discretise continuous values (e.g. quartiles of the distribution of values)
- Use discrete formulation of MI (summing of probabilities)
- Problem of *bias* and the *curse of dimensionality*

## Estimating MI : Continuous

- Kernel density estimation
- Nearest neighbour
- Parametric assumptions

$$F(x,y) = C(F_x(x), F_y(y))$$

$$F(x,y) = C(F_x(x), F_y(y))$$



$$F(x,y) = C(F_x(x), F_y(y))$$



$$F(x,y) = C(F_x(x), F_y(y))$$

- MI is a function only of the copula (Ma and Sun, 2011); does not depend on the marginals
- Semi-parametric approach: assume Gaussian copula (no assumption on marginals)
- Transform marginals to standard normal preserving empirical copula; apply Gaussian parametric estimation

• Transform marginals to standard normal preserving empirical copula; apply Gaussian parametric estimation



- Semi-parametric **lower bound** MI estimate
- Gauss-Copula Mutual Information (GCMI)
  <u>https://github.com/robince/gcmi</u>
- Think of it as a **multivariate** rank-correlation like statistic that can handle discrete and continuous variables and gives effect sizes on an **additive** common scale
- bioRxiv: <u>http://dx.doi.org/10.1101/043745</u>

#### Multivariate MI

- For multidimensional variables, copula transform each dimension independently
- Can apply to low dimensional multivariate responses
  e.g. magnetic field vectors, EEG voltage + instantaneous
  temporal derivative, complex spectra
- Allows for higher-order information theoretic quantities : conditional mutual information, interaction information, directed information (transfer entropy), directed feature information













#### **Simulation 2: Power Modulation**



#### Simulation 2: Power Modulation



#### **Simulation 2: Power Modulation**





Simulation 1





- Avoid issue of circular variables by remaining in 2D complex plane but normalising away effect of amplitude
- A test for modulation of phase + power by discrete or continuous experimental factors with a directly comparable effect size
- Can be applied to spectral data from any decomposition method (Hilbert, wavelets, emprical mode decomposition etc.)
- Interaction information : can directly relate modulations of phase and power within and across bands

### Example: Planar magnetic field



### Example: Planar magnetic field



#### amplitude



× 10<sup>-3</sup>

1.5

0.5

140 ms



100 ms



140 ms





#### direction





200

300

100

### **Representational Interactions**

#### **Spatial Regions**

beamformed MEG activity in:



#### **Temporal Regions**

stimulus modulation of evoked signal on parietal EEG electrode



#### **Frequency Regions**



#### **Reduced Response Descriptions**



#### **Experimental Modalities**



(single trial optimal linear

discriminant values)



simultaneously recorded fMRI voxel activation (single trial GLM beta)

### Interaction Information



### Interaction Information











### Interaction Information

- Redudancy: equivalent representation on a single-trial basis. Implies both bands reflect the same function / mechanism
- Independence: unrelated representations. Implies each band may reflect different processing mechanisms
- **Synergy:** the within trial relationship between the bands is itself modulated by the stimulus. Indicates stimulus modulated cross-frequency coupling.

## Summary

- **GCMI** provides a multivariate rank-based statistical framework for data analysis
- Can be applied to spectral data to quantify and dissociate modulations of **phase and power** by discrete or continuous experimental factors
- Interaction Information can quantify representational interactions between phase/power, or frequency bands
- Can be used for causal / connectivity analysis : e.g. directed information between two different regions
- Can be used to quantify cross-frequency coupling : e.g. information between phase in one band and power in another band

### Thanks

#### github.com/robince/gcmi



New Results

#### A statistical framework for neuroimaging data analysis based on mutual information estimated via a Gaussian copula

In Robin A. A. Ince, Bruno L. Giordano, Christoph Kayser, Continue A. Rousselet, Joachim Gross, Philippe G. Schyns Inter://dx.doi.org/10.1101/043745

stimulus modulation of evoked signal on parietal EEG electrode



stimulus modulation of evoked signal on parietal EEG electrode



Two modulated features



Interaction information (redundancy / synergy)







### Example: gradient of voltage



MI(eye; EEG)



### Example: multivariate response (voltage, gradient)



MI(eye; [EEG dEEG])

# Example: multivariate temporal redundancy

