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From Correlation to Causation
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spatially-contiguous neuro-physiological
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o fMRI correlation studies provides
important insight



Globally conditioned Granger causality

Conditioned approach
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If Z "G-causes" X, then past values of Z should contain
information that helps predict X above and beyond the
information contained in past values of X alone:




Globally conditioned Granger causality

Limitations in fMRI

* Inter-regional differences
In haemodynamic
response function might
obfuscate underlying
neural dynamics

« Signal not very suitable:
need to find a tradeoff
between SNR and TR

(sampling frequency)
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and too many parameters
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* Turns out that GC is invariant to haemodynamic

convolution (Deshpande 2010, Shippers 2011, Barnett, 2011, Seth 2013)

* However, GC is sensitive to sampling frequency
and/or eccessively low SNR (seth 2013)

* Problem in principle becomes “only” problem in
practice (which could be tackled with technology)

* Use of “blind deconvolution approach”
for resting state? [Wu et al, Medical Image Analysis (2013)]



Globally conditioned Granger causality

Limitations in fMRI
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and too many parameters

Laguerre polynomials



Globally conditioned Granger causality

Limitations in fMRI

* Inter-regional differences
In haemodynamic
response function might
obfuscate underlying
neural dynamics

« Signal not very suitable:
need to find a tradeoff
between SNR and TR

(sampling frequency)

 short signals,
and too many parameters
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We want to “search” into the past but we can't afford a
large autoregressive order.
Sgueeze more “past” per parameter!
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Laguerre-based Granger causality

Synthetic simulations

« Several network topologies
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We want to “search” into the past but we can't afford a

Sgueeze more “past” per parameter!

- Duffing oscillators in each node large autoregressive order.
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Characterization of sensitivity and specificity

RQC curve
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Laguerre-based Granger causality

Synthetic simulations

« Several network topologies
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» Duffing oscillators in each node
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Characterization of sensitivity and specificity

Area under ROC curve
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We want to “search” into the past but we can't afford a
large autoregressive order.
Sgueeze more “past” per parameter!
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Between-network Laguerre-based Granger causality

Functional Connectivity Functional Causality Causality between networks

Networks definitions by ICA components: Da_’[aset:j

HUMAN

Connectome
PROJECT

3T fMRI

800+ subjects (age 28 £ 3) scanned
Single-shot 2D EPI readout
TR =0.72 s, whole brain coverage




Between-network Laguerre-based Granger causality

Functional Connectivity Functional Causality Causality between networks

Networks definitions by ICA components:

- Subject-level ICA+FIX (physiological noise removal)
- Group-level: Group-PCA (Melodic's incremental)
- Subject-level: Group-ICA (at 15,25,50 components)

Each ICA component signal is an
average of a 3D-volume

+ deconvolution for HRF influence removal



Between-network Laguerre-based Granger causality

Functional Connectivity Functional Causality Causality between networks

Networks definitions by ICA components:
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Between-network Laguerre-based Granger causality

Group-wise information net flow

e 450+ subjects analysed

» Results extremely stable; qualitative

same results for:

- small changes of autoregressive order
- small changes of a-parameter

- with or without HRF deconvoltion

e Almost hierarchical topology

Neurophysiological interpretation

ICA neurological meaning

Secondary Visual network (extrastriate visual network)
Default Mode Network (DMN)

Primary Visual network (striate visual network)
Visuo-premotor network

Fronto-Parieto-Cerebellar network left side
Fronto-Parieto-Cerebellar network right side

Salience network (SN)

Cerebellar network
Hippocampal,
medial temporal lobe memory spatial orientation network
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11 | Sensory-motor network

12 | Fronto-temporal-parietal “language” network
13 | no unique neurophysiological interpretation

14 | Fronto-polar-higher executive function network
15 | no unique neurophysiological interpretation

Basal Ganglia visual striate network including dmPFC (mainly)




Between-network Laguerre-based Granger causality

e 450+ subjects analysed

Group-wise information net flow

» Results extremely stable; qualitative
same results for:

. \ - small changes of autoregressive order
g’ - small changes of a-parameter
- - with or without HRF deconvoltion

e Almost hierarchical topology

Neurophysiological interpretation

* The default-mode-network (DMN)
modulate the salience-network (SN)
We demonstrate for the first time that
this interaction may be driven by top-
down signal from the DMN to SN

« DMN *“top-down” influence on fronto-
temporal circuits localized across regions
strongly implicated in language production,
comprehension and semantic memory.
DMN top-down inputs to the extended fronto-
temporal language network as the basis of the
linguistic self-referential processes (thought to
enhance the consciousness experience).



Conclusions

» Laguerre-based GC delivers better performance as compared to
classical, linear MVAR-based Granger causality methods.

» Laguerre-based GC applied detect in vivo functional interactions
and causal dynamics across multiple neural networks

Future work

* Investigation of information flow between in vivo functional networks
during specific-task (cognitive, memory, sensory, motor, etc...).

Thank you!




